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Compressive Sensing Algorithms with Applications to Massive
MIMO Systems

by Lixiang LIAN

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology

Abstract

Compressive sensing (CS) has attracted significant attention as a technique that under-
samples high dimensional signals and accurately recovers them exploiting the sparsity of
these signals. There are several ingredients of the CS algorithm. The first is the structure of
the sparse signal. By exploiting additional signal structures in addition to the simple sparsity,
additional performance gains can be obtained. How to choose a flexible yet tractable sparse
prior to capture various sophisticated structured sparsity in specific application would be one
of the challenges for the CS algorithm design. Another important ingredient that would affect
the CS recovery performance is the measurement matrix. Different applications may result in
measurement matrices with different features. How to handle a general measurement matrix
would be another challenge for the CS algorithm design. In wireless communication system,
due to the limited number of scatterers in the environment, the massive multi-input multi-
output (MIMO) channel can be quite sparse under an appropriate spatial basis. Besides the
channel sparsity, the massive MIMO channel further exhibits additional structures. In this
thesis, we focus on the CS algorithm designs with applications to massive MIMO systems to
exploit the possible structured sparsity and handle specific measurement requirement under
different application contexts.

First, we consider channel support side information (CSSI) is available at base station,
which can be exploited to enhance the channel estimation performance and reduce the pilot
overhead. We propose a weighted LASSO algorithm to fully exploit the CSSI and propose an
optimal weight policy to optimize the recovery performance. We also derive the closed-form
accurate expression for the minimum asymptotic normalized squared error and characterize
the minimum number of measurements required to achieve stable recovery.

Then, we consider a channel tracking problem in downlink frequency-division duplexing
(FDD) massive MIMO system. We propose a two-dimensional Markov model to capture
the two-dimensional (2D) dynamic sparsity of massive MIMO channels. We derive an ef-
fective message passing algorithm to recursively track the dynamic massive MIMO channels
exploiting the 2D dynamic sparsity.

Besides the above works, we further propose a more general CS algorithm to solve the
problem of recovering a structured sparse signal from a linear measurement model with un-
certain measurement matrix. The proposed general framework can be utilized to provide
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highly accurate user location tracking in massive MIMO systems. Specifically, a three-
layer hierarchical structured sparse prior model is proposed to capture complicated structured
sparsities. By combining the message passing and variational Bayesian inference (VBI) ap-
proaches via the turbo framework, the proposed Turbo-VBI algorithm is able to fully exploit
the structured sparsity for robust recovery of structured sparse signals under an uncertain
measurement matrix.
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Chapter 1

Introduction

1.1 Compressive Sensing

As the widely deployment of the sensors, data acquisition devices and the growth of the web

and cloud infrastructures, tremendous volume of datasets have been generated, which poses

a great challenge for the data acquisition and interpretation. The traditional acquisition of a

signal is to sample it according to the Nyquist sampling theorem to guarantee no lose infor-

mation and reconstruct it by the samples through a simple linear interpolation. However, in

many applications, such as the imaging systems and video cameras, the Nyquist rate can end

up with too many samples, and increasing the sampling rate can induce significant hardware

cost. This motivates us to develop a new technique to reduce the number of measurements

required to completely describe the signal without sacrificing the reconstruction fidelity.

For most of the natural signals and man-made signals, such as image, video and audio

signals, the wavelet representation of these signals is approximately sparse, i.e., most of the

coefficients are close to zero. In wireless communication system, due to the limited number

of scatterers in the environment, the massive MIMO channel can be quite sparse under an

appropriate spatial basis [2]. Therefore, compressive sensing (CS) is proposed as a new

sampling paradigm that requires fewer measurements for a sparse signal. Mathematically, if

y ∈ CM denotes a length M observation vector and h ∈ CN denotes a length N signal with

M � N , the sampling process can be described as

y = Φh + n, (1.1.1)
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where Φ ∈ CM×N represents a linear transform of signal h, and n ∈ CM is the measurement

noise. As mentioned earlier, most of the high-dimensional signals are compressible (sparse)

in a suitable chosen basis, i.e.,

h = Ax, (1.1.2)

where A ∈ CN×N is the basis matrix, x ∈ CN is the sparse representation of h in the A do-

main. Therefore, compressible signal can be well approximated by its sparse representation.

Denote the non-zero indices Ω = {n : x[n] 6= 0} as the support of x, we have |Ω| � N .

Substituting (1.1.2) into the linear measurement process (1.1.1), we can get

y = ΦAx + n = Ψx + n. (1.1.3)

The goal in the CS algorithm is to recover a high dimensional sparse signal x from signif-

icantly fewer measurements y based on the signal model (1.1.3) with known measurement

matrix Ψ.

From the signal model (1.1.3), there are several ingredients of the CS algorithm. The first

is the structure of the sparse signal. By exploiting additional signal structures in addition

to the simple sparsity, additional performance gains can be obtained. The additional signal

structures are presented in a wide range of applications, including magnetoencephalography

(MEG) [3], dynamic magnetic resonance imaging (MRI) [4], underwater communication [5]

and natural images [6]. In wireless communication system, due to the physical scattering

structure in the environment, the angular domain channel support (i.e., the index set of non-

zero elements of the channel vector) has a burst structure [7] and clustered structure [8] in

the spatial domain. Moreover, due to the slowly changing environment, the channel support

usually changes slowly compared to the instantaneous channel state information (CSI). As

a result, the common support assumption for the channels over time has been made in [9]

and [10]. Another important ingredient is the measurement matrix Ψ. Different CS recovery

algorithms have different requirements for the measurement matrix. For example, [11] shows

that with i.i.d. Gaussian measurement matrix, which can be shown to have the restricted

isometry property (RIP) with high probability, we can exactly reconstruct the sparse signal

with overwhelmingly high probability via basis pursuit (or minimum `1 norm reconstruction)

for noiseless case. On the other hand, different applications may result in measurement ma-

trices with different features, which may even contain uncertain parameters. Therefore, it’s
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paramount to design efficient and robust CS algorithms based on different sparsity structures

and measurement requirements under different applications.

There are several common methods to solve the CS problem.

1.1.1 Greedy Algorithms

Orthogonal matching pursuit (OMP) [12] and many variants of OMP such as the compres-

sive sampling matching pursuit (CoSaMP) [13] and subspace pursuit (SP) [14] are greedy

approaches, which iteratively improve their estimates by choosing the column of the mea-

surement matrix that has the most correlation with the residual. The main difference between

the other greedy algorithms and OMP is that instead of moving just one column to the ac-

tive set at every iteration, they add more columns to the active set, and they allow removal

of element from the active set as well. Later greedy algorithms have also considered struc-

tured sparse signal. For example, a joint OMP (JOMP) is proposed to recover partially joint

sparse signal in [15], a simultaneous OMP (SOMP) is proposed to recover common sparse

signals in [16]. These greedy algorithms have relatively low computational complexity. How-

ever, it’s hard to extend the OMP-based algorithms to incorporate more complicated sparsity

structures, such as Markov structure. Moreover, RIP used to analyze the performance for

OMP-based algorithms is too loose to get any insightful information and greatly restricts the

type of the measurement matrix that can be chosen.

1.1.2 Generalized LASSO

Another widely used method to recover the sparse signal x is the generalized LASSO [17],

which solves the following problem:

x̂ := argmin
x

1
2 ||y−Ψx||22 + λf(x), (1.1.4)

where f(x) is the regularization function, λ ≥ 0 is the regularizer parameter. The regular-

ization function could be used to promote the structure of the sparse signal x. For example,

if x is a group-sparse signal, i.e., x can be divided into blocks x = [x1; · · · ; xB] and only

a few of them are non-zero, we can choose f(x) = ∑B
i=1 ‖xi‖ to impose the group-sparse

structure of x [18]. For the standard sparse signal x, f(x) = ‖x‖1 can be used to promote

the i.i.d. sparsity of x. There are several major drawbacks of generalized LASSO. First, the
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performance is sensitive to the choice of the regularization function f(x) and the value of

regularizer parameter λ. Complicated structured sparsity cannot be well modeled by a simple

function. Moreover, it’s difficult to find the optimal regularizer λ, especially for complicated

regularization function. Second, if we choose a non-convex regularization function, the com-

plexity of solving the resulting problem is high and the algorithm can easily get stuck at a

bad local optimum.

1.1.3 Approximate Message Passing

Approximate message passing (AMP) [19] applies Gaussian and quadratic approximations

at the asymptotic region (i.e., M,N → ∞) to loopy belief propagation, which is fast and

highly accurate, and admits to rigorous analysis, i.e., state evolution (SE), when i.i.d. Gaus-

sian measurement matrix and i.i.d. sparse priors are involved [20]. Various variations of

AMP algorithm have been proposed to handle the non-i.i.d. Gaussian measurement matrix

and more complicated sparse priors. For example, orthogonal approximate message passing

(OAMP) has been proposed in [21–23] to achieve a better performance than AMP when the

sensing matrix is a partial orthogonal matrix, such as a partial discrete Fourier transformation

(DFT) matrix. Generalized AMP (GAMP) [20] has been proposed to handle non-Gaussian

measurement noise. Moreover, AMP and turbo approach have been combined to design more

advanced CS recovery algorithms such as the Turbo-AMP [24] and Turbo-CS [25], which can

handle more complicated priors of x (e.g., Markov and Markov tree priors [26]). However,

these AMP-based algorithms may diverge under a more general measurement matrix, espe-

cially when there is correlation between different columns of the measurement matrix or the

mean of the measurement matrix is non-zero.

1.1.4 Sparse Bayesian Inference

Sparse-Bayesian-inference-based algorithms, such as sparse Bayesian learning (SBL) [27]

and variational Bayesian inference (VBI) [28, 29] have been proposed to solve the CS prob-

lem, in which a two-layer hierarchical prior is used to model the i.i.d. sparsity or group-

sparsity of unknown signal. SBL/VBI can deal with the unknown parameters involved in the

CS model, such as the uncertain parameters induced by the priors, or the uncertain parame-

ters involved in the measurement matrix Ψ. The unknown parameters can be learned through

expectation maximization (EM) [30] framework, then the sparse signal x is recovered using
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maximum a posteriori (MAP) based on the learned parameters and the measurements y. The

limitations of the SBL/VBI are that the two-layer hierarchical prior [27–29] can not handle

more complicated sparse priors that may occur in practice, such as the Markov tree priors [26]

or the hidden Markov priors [31].

1.2 Thesis Contributions

Massive MIMO, which operates with a large number of antennas at the base station (BS), is a

promising technology for future wireless systems [32]. It can provide large spatial multiplex-

ing gain as well as array gain to enhance both the capacity and energy efficiency of wireless

systems [33]. Accurate CSI estimation and tracking is essential to reap the benefit of massive

MIMO for communication over a dynamic wireless channel [9, 10, 34–37]. In addition to

the communication benefits, the massive MIMO technique could also be exploited to enable

high-accuracy localization [38,39]. In this thesis, we aim to design new CS algorithms based

on the existing methods with applications to the massive MIMO systems, such as massive

MIMO channel estimation (CE), massive MIMO channel tracking and user location tracking

in massive MIMO systems.

1.2.1 Optimally-tuned Weighted LASSO for Massive MIMO Channel

Estimation

To start with, we design an optimally-tuned weighted LASSO algorithm to fully exploit the

statistical prior support information (PSI). In practice, it is possible to obtain some prior

information of the support Ω = {n : x[n] 6= 0}. For example, in many applications, we

need to recover a sequence of sparse signals x (t) whose supports change slowly over time

from a sequence of measurements y (t). In this case, the support estimated at the previous

time can be used as the PSI to recover the current sparse signal. Usually, the PSI is imperfect

due to the estimation error or the time varying statistics of the unknown signal, we cannot

perfectly know the exact positions of the nonzero elements. However, it is possible to obtain

a statistical prior about the support location. For example, a practitioner may have different

level of confidence on the different parts of signal to be nonzero, i.e., the elements located in

some parts are believed to be nonzero with higher probability compared to those located in

other parts. In other settings, the probabilities on each entry being nonzero may be provided.
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Therefore, it is important to incorporate such statistical PSI in an optimal way to enhance the

recovery performance.

In massive MIMO system, it is shown [40] that channel statistics are changing slowly.

Therefore, the channel support estimated previously provides some prior information for the

current CE. Considering a BS with imperfect channel support side information (CSSI), the

proposed optimally-tuned weighted LASSO can be employed to exploit the CSSI in massive

MIMO system to enhance the CE performance/reduce the number of required pilots.

1.2.2 Dynamic Turbo-OAMP for Downlink FDD-Massive MIMO Chan-

nel Tracking

In LASSO algorithm, it is difficult to design a proper penalty function f(x) to capture sophis-

ticated sparsity structure of x with low computational cost and good performance. However,

in some applications, the unknown signal exhibits quite complicated sparsity structures. On

the other hand, OAMP is a variation of the well-known AMP [19, 41] and it is shown in [23]

to achieve a better performance than AMP when the measurement matrix is a partial orthog-

onal matrix. However, the OAMP in [23] and the associated SE analysis only works for i.i.d.

priors. We extend the OAMP to dynamic Turbo-OAMP (D-TOAMP), which works for ar-

bitrary priors, and thus provides a systematic framework for the design of dynamic sparse

sequence tracking algorithms.

In massive MIMO system, due to the clustered scattering, the support of the massive

MIMO channels will have clustered structure in spatial domain, i.e., the non-zero elements of

the angular domain channel tend to concentrate on a few clusters. Furthermore, due to slowly

changing propagation environment, the dynamic scattering structures are temporally corre-

lated, which will result in the probabilistic dependencies of channels across time. Therefore,

it is paramount to design a new algorithm exploiting such 2D dynamic sparsity (i.e., struc-

tured sparsity in the spatial domain and probabilistic temporal dependency of channel in the

temporal domain) of massive MIMO channels to improve the channel tracking performance.

The proposed D-TOAMP algorithm can be employed to recursively track the time-varying

channels with a 2D dynamic sparsity.
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1.2.3 Turbo-VBI for User Location Tracking in Massive MIMO Sys-

tems

Even though the AMP-based algorithms, such as Turbo-AMP [24] and Turbo-CS [25] can

exploit the sophisticated priors, they perform badly under a general measurement matrix, es-

pecially when the measurement matrix is ill-conditioned. The performance of SBL/VBI is

insensitive to the measurement matrix. However, the two-layer hierarchical prior in SBL/VBI

can not handle more complicated sparse priors. This motivates us to propose a novel Turbo-

VBI framework to overcome the drawbacks of the existing methods and achieve robust re-

covery of structured sparse signals with more general uncertain measurement matrix. The

proposed Turbo-VBI framework can exploit sophisticated structured sparsity to improve the

recovery performance. It is robust w.r.t. the uncertain parameters in the measurement matrix

and prior distribution and it works well for more general measurement matrices with possibly

correlated columns.

Due to the high directivity and increased spectral efficiency, the massive MIMO technol-

ogy employed in 5G networks can potentially provide accurate user localization. We focus on

using massive MIMO systems for efficient tracking of user’s location. Instead of performing

individual localization at each time slot, we could exploit the user mobility and the tempo-

ral correlation of wireless channels to improve location tracking accuracy, which will lead

to special structured sparsity for massive MIMO channels. Moreover, the measurement ma-

trix in the location tracking problem is ill-conditioned with off-grid parameters. Therefore,

Turbo-VBI algorithm can be employed to recursively track user’s location in massive MIMO

systems.

1.3 Thesis Organization

In this thesis, we focus on compressive sensing algorithms designs with applications to the

massive MIMO systems. The remainer of this thesis is organized as follows.

In Chapter 2, we propose a weighted LASSO algorithm to fully exploit the statistical

PSI and optimize the recovery performance. In the proposed algorithm, we exploit the most

general statistical PSI model, a multi-level PSI, and incorporate it into the LASSO using

a weighted l1 norm penalty function. An optimal weight policy is proposed to minimize

the asymptotic normalized squared error (aNSE). We also derive the closed-form accurate
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expression for the minimum aNSE and characterize the minimum number of measurements

required to achieve stable recovery. Based on this, we discuss the impact of PSI quality on

the aNSE performance of the proposed algorithm. Theoretical analysis and simulations both

show the performance advantages of our proposed solution over various baselines. Moreover,

we utilize the proposed optimally-tuned weighted LASSO algorithm to exploit the CSSI in

massive MIMO system to enhance the CE performance. The material in this chapter has been

presented in part in [J1, C1].

In Chapter 3, we consider downlink FDD-massive MIMO system operating with limited

scattering around the base station and flat fading channel is considered. We propose a two-

dimensional Markov Model (2D-MM) to capture the 2D dynamic sparsity of massive MIMO

channels. The 2D-MM has the flexibility to model different propagation environments in

practice. We derive an effective message passing algorithm, i.e., D-TOAMP, to recursively

track a dynamic massive MIMO channel with a 2D-MM prior. The proposed D-TOAMP al-

gorithm does not require knowledge of the 2D-MM channel parameters, which could be au-

tomatically learned through the expectation maximization framework. Extensive simulations

show that the proposed D-TOAMP can achieve significant gains over the existing algorithms

under realistic channels. The material in this chapter has been presented in part in [J2].

In Chapter 4, we propose a novel Turbo-VBI algorithm framework, in which a three-layer

hierarchical structured (3LHS) sparse prior model is proposed to capture various sophisti-

cated structured sparsities that may occur in practice. By combining the message passing and

VBI approaches via the turbo framework, the proposed Turbo-VBI algorithm is able to fully

exploit the structured sparsity (as captured by the 3LHS sparse prior) for robust recovery of

structured sparse signals under an uncertain measurement matrix. The material in this chapter

has been presented in part in [J4, J6, J7].

In Chapter 5, we apply the Turbo-VBI framework to user location tracking problem in

massive MIMO systems. Under this application scenario, we firstly propose a 3LHS sparse

prior, i.e., temporal Markov group-sparse (TMGS) model, based on a grid reference to cap-

ture the probabilistic temporal correlation and group sparsity of the massive MIMO channels

jointly. Then based on the Turbo-VBI framework, we propose a variant of Turbo-VBI algo-

rithm, i.e., dynamic variational Bayesian inference (D-VBI) algorithm, to handle the TMGS

priors under ill-conditioned measurement matrix in the location tracking problem. The D-

VBI algorithm can jointly recover the user’s coarse location in the grid reference and refine
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the off-grid points to automatically learn the user’s exact location to high accuracy. More-

over, the TMGS-based D-VBI algorithm can provide prior information about the user’s next

location and the possible arriving directions of the future channels to the consecutive time

slot to improve the location tracking accuracy. Finally, we verify the superior performance

of the proposed location tracking algorithm by extensive simulations. The material in this

chapter has been presented in part in [J3].

In Chapter 6, we close this thesis with a brief summary and discussions of future research

directions.
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Chapter 2

Weighted LASSO for Sparse Recovery

with Statistical Prior Support

Information

2.1 Introduction

We consider recovering the unknown sparse signal x? ∈ RN (i.e., the number of non-zero

entries of x? is much smaller than N ) based on the measurement matrix A ∈ RM×N 1 and

measurements y ∈ RM from the following model:

y = Ax? + n, (2.1.1)

where M � N and n ∈ RM is the measurement noise vector. The entries of n are i.i.d.

Gaussian with mean 0 and variance σ2. A widely used method to recover the sparse signal

x? is the l22-LASSO, which solves the following problem:

x̂ := argmin
x

1
2 ‖y−Ax‖2 + σλ ‖x‖1 . (2.1.2)

We denote the support of x as Ω , {n : x[n] 6= 0} for brevity. Without any PSI, standard

LASSO in (2.1.2) is a useful method for sparse recovery. In some settings, a statistical prior

about the support of the sparse signal may be provided. It is critical to optimally incorporate

such statistical PSI to enhance the recovery performance. One major approach to incorporate

1We use A as the notation for measurement matrix in this chapter.
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the statistical PSI is weighted l1 norm minimization, which has several variations. For ex-

ample, [42–46] studied the following weighted l1 norm minimization problem in a noiseless

case:

x̂ := argmin
x
‖x‖1,w subject to Ax = y, (2.1.3)

where ‖x‖1,w denotes the weighted l1 norm, given by

‖x‖1,w =
N∑
i=1

w[i] |x[i]| , (2.1.4)

and w is a weight depending on the statistical PSI, w[i] and x[i] are the i-th element of w

and x, respectively. In a noisy case, the following problems, (2.1.5) and (2.1.6), were studied

in [47–50] and [51], respectively,

x̂ := argmin
x
||x||1,w subject to ||y−Ax||2 ≤ ε, (2.1.5)

x̂ := argmin
x

1
2 ||y−Ax||22 + σ||x||1,w. (2.1.6)

Problem (2.1.6) is also called a weighted LASSO2 since it is a generalization of the standard

LASSO in (2.1.2).

How to choose the weights w is a subtle process and is critical to guarantee the per-

formance of PSI-aided compressive signal recovery algorithms. There are several existing

methods to determine the weights w based on different forms of PSI available.

0-1 weights with estimated support: If a support estimation Ω̃ is given, the modified-CS

proposed in [42, 47] and modified basis pursuit denoising proposed in [51] incorporated this

prior information using weighted l1 norm minimization with zero weight on the known (but

possibly inaccurate) support part. Namely, given the support estimation Ω̃, weight wi = 0

was set for the indices i ∈ Ω̃, and wi = 1 otherwise. However, with inaccurate support

estimation, setting zero weight on the known support part is usually not optimal. Intuitively,

the optimal choice of weight should depend on the PSI accuracy. If the PSI is perfect, the

weight on the indices Ω̃ should be zero to impose the sparsity outside of Ω̃. If the PSI is very

inaccurate, we should also penalize the high values x[i] in Ω̃ by assigning nonzero weight.

2In weighted LASSO formulation, the actual weight vector of the weighted `1 norm regularization term
is σw, the weight vector that we optimize in this chapter is normalized (w.r.t. the noise standard deviation σ)
weight vector w, which is a scaling coefficient of the actual weight. Therefore, the actual weight in the weighted
LASSO formulation contains the noise effect.
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Therefore, it can be conjectured that the optimal weight decreases with the accuracy of the

PSI.

Adaptive weights with estimated support in the noiseless case: In [43], an estimated

support is also provided. They used the weighted nonuniform null space property to analyze

the necessary and sufficient condition for successful recovery. They also proposed to choose

the weight on the estimated support part as 1 − α, where α is the support accuracy, if the

weight on the remaining part is set to be 1.

PSI-aware weights with two-level PSI in the noiseless case: [44,45] studied the case in

which the PSI is defined in terms of two disjoint sets with the probability of being nonzero in

each set provided and two different weights are assigned to the two sets. [44] and [45] derived

the sufficient recovery condition based on the Grassman angle approach and “escape through

a mesh lemma”, respectively. However, they did not directly provide any method to calculate

the optimal weights.

Optimal weights with multi-level PSI in the noiseless case: Recently, [46] adopted the

multi-level PSI model, which separated the complete index set [1, · · · , N ] into T disjoint

partitions, and different weights could be assigned to each partition. In [46], the authors used

a notion of statistical dimensions to provide a simple analytical formula for optimal weights

which minimizes the measurement threshold needed for exact recovery3.

However, the adaptive weights in [43] and optimal weights in [46] are all discussed under

a noiseless setup. Their technical tools are not applicable to a noisy scenario. To the best of

our knowledge, the optimal choice of weights in a noisy case remains an unexplored problem.

In this chapter, we consider the general multi-level PSI model under a noisy setup, and

propose an optimally-tuned weighted LASSO algorithm to exploit the statistical PSI to en-

hance the recovery performance and reduce the number of measurements required for stable

recovery4. The main contributions are summarized below.

• Accurate Recovery Error Bound: To determine the optimal weights in the weighted

LASSO for a noisy case, we need to first obtain an accurate recovery error bound.

The reconstruction error bound of weighted l1 norm minimization with PSI has been

discussed in [47–50]. However, their results are all based on the RIP [53], which is

3Compared to [46], this chapter considers a more practical model with noise in the measurements. Due to
the consideration of noise, the problem formulations, analytical approaches, performance metrics and optimal
weights formulas are all different.

4Stable recovery means that the ratio between the estimation error and the noise variance is bounded as the
noise variance goes to zero [52].
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known to be too loose to obtain any insightful information. To overcome this challenge,

we apply the CGMT approach in [52] and derive an accurate expression for the aNSE

of the proposed algorithm, which is defined as the ratio between the estimation error

and the noise variance as the noise variance goes to zero.

• Weights Optimization and Closed-form Expression of the Minimum aNSE: Based

on the expression of the aNSE, we derive the optimal weights that minimize the aNSE.

Moreover, we obtain a closed-form expression of the minimum aNSE under the optimal

weights and characterize the minimum number of measurements required for stable

recovery.

• Impact of PSI Quality on the aNSE Performance: We also analyze the impact of

PSI quality on the performance of the optimally-tuned weighted LASSO, which the-

oretically shows the type of PSI the proposed optimally-tuned weighted LASSO can

benefit from.

The rest of this chapter is organized as follows. In Section 2.2, we describe the weighted

LASSO algorithm to exploit the multi-level PSI and apply the algorithm to channel estima-

tion problem in massive MIMO systems. In Section 2.3, we derive an accurate aNSE, the

optimal weights which minimize the aNSE, and the closed-form minimum aNSE. Based on

this, we offer some discussions. In Section 2.4, we discuss the impact of PSI quality on

the performance of the optimally-tuned weighted LASSO. The analytical results are verified

numerically in Section 2.5, and summaries are given in Section 2.6.

2.2 Weighted LASSO with Multi-level Prior Support Infor-

mation

2.2.1 Multi-level Prior Support Information

In this chapter, the unknown vector x ∈ RN is a K sparse signal, i.e., |Ω| = K. Besides

the prior information that the unknown vector is K sparse, we are also given some statistical

prior information about where the support is situated. Specifically, we divide the complete

index set n =[1, · · · , N ]T ∈ RN into T disjoint partitions {St}Tt=1; we call St the t-th PSI

component set in the rest of the chapter. Two parameters αt, βt are associated with each set
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St, which are defined as follows:

αt = Pr (x[i] 6= 0) ,∀i ∈ St; βt = |St|
N
. (2.2.1)

By this, we mean that for any i ∈ St, x[i] is nonzero with probability αt, and is zero with

probability 1 − αt. When αt = 1, this means the set St is exactly part of the support of

unknown vector x. When 0 < αt < 1, this means only part of the indices in set St belong to

the support. When αt = 0, this means the corresponding indices of vector x in set St could

be ignored in the recovery process. Therefore, we only consider the case when αt > 0 in the

following discussion. We use αt to denote the PSI accuracy in the t-th PSI component set St.

βt reflects the size of set St. Therefore, the average sparsity in set St (the average number of

non-zero elements indexed in St) is Nβtαt.

The information set I =
{
K, {St, αt, βt}Tt=1

}
is our prior information. Since it is com-

prised of partial PSI with different accuracy levels (different parameters {St, αt, βt}), we call

such statistical PSI as multi-level PSI. Note that the same multi-level PSI is also considered

in [46] for the noiseless case and it includes many PSI models in previous works as special

cases. For example, if T = 2, multi-level PSI degrades to two-level PSI as in [44, 45]. If

T = 2, S1 = Ω̃, and α1 = |Ω̃ ∩ Ω|/|Ω̃|, multi-level PSI degrades to the case when estimated

support is given as in [42,43,47,48,51,54]. If T = m+1, ∪t=1,···mSt = Ω̃,αt = |St∩Ω|/|St|

for t = 1, · · · ,m, the multi-level PSI degrades to the PSI model as in [49]. The standard

compressive sensing model is a special case of multi-level PSI where these probabilities αt

are all equal to K/N .

2.2.2 Application Examples

In this section, we give two important application examples that involve sparse signal recov-

ery with multi-level PSI.

Example 2.1 (Massive MIMO Channel Estimation Problem). Consider a massive MIMO

system with one BS serving single-antenna users, where the BS is equipped with a half-

wavelength space ULA comprised of N antennas. To estimate the downlink channel hH ∈

C1×N , the BS transmits M training sequences pt ∈ CN×1, t = 1, ...,M . Then the received
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signal y ∈ CM×1 of a user can be written as

y = Ph + n, (2.2.2)

where P = [p1, · · · ,pM ]H is a M × N pilot matrix which is known to the receiver and

n ∼ CN (0, σ2I) is the Gaussian noise. Define the angular domain channel [2] as x? = Fh,

where F is the DFT matrix. Then the received signal can be rewritten as

y = PFHx? + n = Ax? + n, (2.2.3)

where A = PFH . Note that the angular domain channel x? is usually sparse due to limited

scatters at the BS [7]. Therefore, (2.2.3) is the CS model in (2.1.1) with measurement matrix

A and sparse signal x?. Moreover, the channel support, denoted by Ω , {n : x?[n] 6= 0},

only depends on the AoD at the BS in the downlink pilot transmission, which is determined by

the scattering environment around the BS. Since the scattering environment usually changes

at a slow timescale, the channel support also changes very slowly. And thus the BS can obtain

some knowledge of channel support from previously estimated channel supports using long

term stochastic learning [55]. However, the BS has imperfect knowledge of Ω either due

to the random nature of the channel or the estimation error in the channel support learning

process. Specifically, the BS can obtain an estimated channel support Ω̂ with |Ω̂| = L̂, a

lower bound on the number of correct indices in the estimated support |Ω ∩ Ω̂| ≥ Lc, and an

upper bound on the actual support size |Ω| ≤ L [36]. For example, Ω̂ could be the previously

estimated channel support at the BS. The information set {Ω̂, L, Lc} corresponds to a multi-

level PSI model, in which T = 2, S1 = Ω̂, S2 = {1, ..., N} \Ω̂, β1 = L̂/N, β2 = (N− L̂)/N,

α1 ≈ Lc/L̂, α2 ≈ (L− Lc)/(N − L̂).

Example 2.2 (Real-time dynamic magnetic resonance image reconstruction problem). Con-

sider real-time dynamic magnetic resonance (MR) image reconstruction using the 2-D DWT

as the sparsifying basis. For an image sequence, let (Z)n1×n1 denote the image at the current

time, and N = n2
1 be its dimension. Let X denote the 2D DWT of Z, i.e. X = WZWT ,

where W is the DWT matrix. Let Y = FZF = FWTXWF be the 2D DFT of Z, and F is

the DFT matrix. Using Kronecker product to convert the above to a 1-D problem, we can get

yfull = F1DWT
1Dx?, (2.2.4)
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where yfull = vec(Y), F1D = F ⊗ F, WT
1D = WT ⊗WT , and x? = vec(X). In MR, a

smaller number, M < N , of Fourier coefficients of the image will be captured. This can be

modeled by applying an M ×N mask G to yfull to get the observation y. The mask matrix

G only contains a single 1 at a different location in each row and all other entries are zero. In

certain situations, the MR measurements are noisy, then (2.2.4) can be rewritten as

y = Ax? + n, (2.2.5)

where A = GF1DWT
1D and n ∼ N (0, σ2I). Note that natural images, e.g., cross-sectional

images of human organs are usually piece-wise smooth, the wavelet transform domain of

these images, x?, is sparse [4]. Therefore, (2.2.5) is the CS model in (2.1.1) with measurement

matrix A and sparse signal x?. Let Ω denote the support of x?. It’s empirically observed

that the support set of image’s wavelet transform changes very slowly with time, due to the

temporal dependencies [4]. Thus, we can obtain some prior information about current support

Ω from previously estimated images. Specifically, we can obtain a support estimation Ω̂,

the error in the known part of support ∆e = Ω̂ ∩ Ωc and the unknown part of the support

∆ = Ω ∩ Ω̂c [4, 42], where Ωc = {1, ..., N} \Ω, Ω̂c = {1, ..., N} \Ω̂. For example, Ω̂ could

be the estimated support of the wavelet coefficients’ vector of the previous image. This prior

information set {Ω̂,∆e,∆} corresponds to a multi-level PSI model, in which T = 2, S1 = Ω̂,

S2 = Ω̂c, β1 = |Ω̂|/N , β2 = (N − |Ω̂|)/N , α1 = (|Ω̂| − |∆e|)/|Ω̂|, α2 = |∆|/(N − |Ω̂|).

2.2.3 Weighted LASSO Algorithm

Based on the multi-level PSI I, we consider the weighted LASSO algorithm with weighted

l1 norm as the regularization function. The weighted LASSO algorithm obtains the esti-

mated sparse signal x̂ from the linear measurement model in (2.1.1) by solving the following

weighted LASSO problem:

x̂ := argmin
x

1
2 ||y−Ax||22 + σ||x||1,w, (2.2.6)

where the multi-level PSI is incorporated in the weight vector w. Specifically, for each PSI

component set, we assign a weight wt ≥ 0, and choose the weight vector w ∈ RN according
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to

w =
T∑
t=1

wt1St(n), (2.2.7)

where 1St(·) is the indicator function such that for each element i ∈ n

1St(i) =


1 if i ∈ St

0 else
. (2.2.8)

In the following section, we will analyze the closed-form performance of the weighted

LASSO algorithm to investigate how the weights w and PSI I will affect the performance,

based on which, the optimal weight vector w will be given.

2.3 Closed-form Performance Analysis of Weighted LASSO

In this section, we shall apply the CGMT approach [56] to derive the minimum aNSE with

the optimal LASSO weight vector w? (minimized over the weight vector w). Specifically, we

first formally define the aNSE and another important concept called Average Gaussian Dis-

tance. Then we show that the aNSE for a given LASSO weight vector w can be expressed

using the average Gaussian distance. After that, we derive the optimal LASSO weight vector

and the associated minimum aNSE, which is expressed using the minimum average Gaus-

sian distance. We also discuss how to calculate the minimum average Gaussian distance and

obtain its accurate and closed-form approximations and the corresponding minimum aNSE.

Finally, based on the above results, we obtain stable recovery condition of the proposed algo-

rithm (i.e., the minimum number of measurements required to achieve stable recovery).

2.3.1 Definitions of aNSE and Average Gaussian Distance

In this section, we first give some definitions which will be used to measure the performance

and express the result. Let x̂ denote the estimate of x? obtained by solving the weighted

LASSO problem (2.2.6). The normalized squared error (NSE) of (2.2.6) with parameter w

is defined as

NSE(w, σ) , ||x̂− x?||22
σ2 , (2.3.1)
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and aNSE is defined as

aNSE(w) , lim
σ→0

NSE. (2.3.2)

aNSE has been widely used as an important performance metric for performance analysis

of noisy CS problem [7, 52, 57–59]. aNSE can be interpreted as the coefficient of the first

order Taylor expansion of the squared error (SE) as explained below. Let SE (w, σ2) ,

‖x̂− x‖2 denote the squared error of the weighted LASSO formulation. The first order

Taylor expansion of SE (w, σ2) w.r.t. σ2 is given by

SE
(
w, σ2

)
= SE (w, 0) + ∂SE (w, 0)

∂σ2 σ2 + o
(
σ2
)

= ∂SE (w, 0)
∂σ2 σ2 + o

(
σ2
)
. (2.3.3)

Note that in (2.3.3), we assume the number of measurements is sufficiently large for perfect

recovery when there is no noise in the measurements, and thus SE (w, 0) = 0. By the

definition of aNSE, we have aNSE (w) = ∂SE(w,0)
∂σ2 . Therefore, although aNSE is defined in

the asymptotic regime as σ → 0 and itself does not contain the noise variance σ2, it captures

the first order effect of noise on the SE by characterizing how fast the first order term in the

SE increases with the noise variance σ2. It is conjectured in [52] that aNSE is the worst

case NSE: aNSE(w) = supσ>0 NSE(w, σ), which highlights the significance of studying

the aNSE. In practice, aNSE can be used to tune the algorithm parameters to minimize the

worst case reconstruction error over unknown noise variance. Moreover, simulation results

in [7, 52] show that

MSE ,
1
N
||x̂− x?||2 ≈ aNSE(w)σ2/N (2.3.4)

at moderate and high SNR. Therefore, it’s very important to analyze the aNSE performance.

In the following, we will give the definition of Average Gaussian Distance, which is the

key step to analyze the aNSE using CGMT approach.

For any weight vector z ∈ RN satisfying z = ∑T
t=1 zt1St(n) for some zt ≥ 0, t = 1, ..., T ,

let ∂ ‖x?‖1,z denote the subdifferential set of weighted l1 norm ‖x‖1,z = ∑N
i=1 z[i] |x[i]| at

x?. Then the Average Gaussian Distance to the ∂ ‖x?‖1,z with weight vector z is defined as

D(z) , 1
N
Eh[dist2(h, ∂ ‖x?‖1,z)], (2.3.5)

where h ∈ RN has i.i.d. N (0, 1) entries, and dist(h, ∂ ‖x?‖1,z) is the Gaussian distance for
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fixed h defined as

dist(h, ∂ ‖x?‖1,z) = ||h− ∂ ‖x?‖1,z ||

, min
s∈∂‖x?‖1,z

||h− s||. (2.3.6)

Note that we need to define the average Gaussian distance for any weight vector z ∈ RN

satisfying z = ∑T
t=1 zt1St(n), because the aNSE of the weighted LASSO with weight w is

expressed using the average Gaussian distance for another weight vector z that depends on

but not equal to w.

The average Gaussian distance D(z) for weighted l1 norm can be calculated by the fol-

lowing Lemma.

Lemma 2.1 (Average Gaussian Distance of Weighted l1 norm). Let M,N → ∞ with M
N
→

δ ∈ (0,∞), and a partition {St}Tt=1 is given with parameters |Ω∩St||St| → αt ∈ (0, 1], |St|
N
→

βt ∈ (0, 1]. The average Gaussian distance to the scaled subdifferential of the weighted l1

norm defined in (2.3.5) can be calculated as follows:

D(z) =
T∑
t=1

βtd(zt), (2.3.7)

where

d(zt) = αt
(
1 + z2

t

)
+ (1− αt)

2
(
1 + z2

t

)
Q (zt)−

√
2
π
zte
− z

2
t
2

 , (2.3.8)

and Q(·) is the Q function defined as Q (x) = 1√
2π
∫∞
x exp

(
−u2

2

)
du.

Please refer to Appendix 2.7.1 for the proof.

Remark 2.1. Even though in the definition of average Gaussian distance in (2.3.5), it is related

to the actual sparse signal x?. However, as shown in Appendix 2.7.1, after calculating the

sub-differential of weighted `1 norm and the minimal distance for fixed vector in (2.3.6),

and taking the expectation w.r.t. the i.i.d. Gaussian vector h, the resulting average Gaussian

distance only depends on the PSI parameters I =
{
K, {St, αt, βt}Tt=1

}
as shown in (2.3.7)

and (2.3.8). For any sparse signal with same PSI parameters I, the average Gaussian distance

D shares the same form.

In the next section, we will show that the aNSE for a given LASSO weight vector w can
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be expressed using the average Gaussian distance.

2.3.2 aNSE for Given LASSO Weight Vector w

For the statement of our result, we define a scalar function of vector z, G(z) , ∑T
t=1 βtg(zt),

where g(zt) = −(zt/2)∂d(zt)/∂zt is a scaled product of zt and ∂d(zt)/∂zt, and d(zt) is

defined in (2.3.8). We define the map as follows:

Definition 2.1 (map). LetRN
+ :=

{
z ∈ RN

+ |δ −D(z) > max {0, G(z)}
}

and define the map

Λ: RN
+ → RN

+ as

Λ (z) := z
√
N (δ −D(z)−G(z))√

δ −D(z)
. (2.3.9)

Similar to Lemma 2.1 in [52], if δ > minzD(z), then the inverse mapping Λ−1 : RN
+ →

RN
+ is well defined. Then we have the following theorem to characterize the behavior of the

aNSE in the large system setup.

Theorem 2.1 (aNSE of weighted LASSO). Suppose the measurement matrix A has i.i.d.

Gaussian entries with zero mean and unit variance. Fix any weight vector w in (2.2.6), let

M,N →∞ with M
N
→ δ ∈ (0,∞), the following equality holds with probability 1:

aNSE(w) = D (Λ−1 (w))
δ −D (Λ−1 (w)) . (2.3.10)

Please refer to Appendix 2.7.2 for the proof.

2.3.3 Optimal Tuning of LASSO Weights and Minimum aNSE

In the following Corollary, we give the optimal choice of LASSO weights which minimize

the aNSE in Theorem 2.1, and the corresponding minimum aNSE.

Corollary 2.1 (Optimal LASSO weights and minimum aNSE). Suppose the measurement

matrix A has i.i.d. Gaussian entries with zero mean and unit variance. Let M,N →∞ with
M
N
→ δ ∈ (0,∞), D(z?)→ D? ∈ (0, δ) where z? = arg minzD(z), and a partition {St}Tt=1

is given with parameters |Ω∩St||St| → αt ∈ (0, 1], |St|
N
→ βt ∈ (0, 1]. Then the optimal LASSO

weight vector that minimizes the aNSE is given by

w? = z?
√
N (δ −D?). (2.3.11)
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The corresponding minimum aNSE is given by

aNSE?(w?) = D?

δ −D?
, (2.3.12)

Proof. According to (2.3.10), we have z? = Λ−1 (w?). Because G(z?) = 0, we have

w? = Λ(z?) = z?
√
N (δ −D(z?)). Combining this with Theorem 2.1, we can conclude

the minimum aNSE as in (2.3.12).

Remark 2.2. To make sure δ > D? and the denominator of (2.3.12) is positive, the number

of measurements should be larger than a critical point ND?. In this case, the robust recovery

can be guaranteed in the noisy case.

In the following, we will calculate the minimum average Gaussian distance and obtain its

accurate and closed-form approximation and the corresponding minimum aNSE.

Due to the separable property of D(z), we have

D(z?) =
T∑
t=1

βtd(z?t ), (2.3.13)

where z?t = arg minztd(zt), which depends on the parameter αt. The minimum average

Gaussian distance in (2.3.13) is expressed as a complicate function of z?t , which is the optimal

solution of an optimization problem. In the following, we derive an accurate and closed-form

approximation for the minimum average Gaussian distance to simplify the calculation. The

closed-form approximation also provides more useful insight about how the key PSI/system

parameters affect the performance of the proposed optimally-tuned weighted LASSO algo-

rithm. In particular, it facilitates the PSI quality analysis given in Section 2.4.

We first give a closed-form upper bound of D(z?) in the following lemma.

Lemma 2.2. For given {αt} and {βt}, the minimum average Gaussian distance D(z?) can

be upper bounded as

D(z?) ≤
T∑
t=1

βtαt

(
2 log

( 1
αt

)
+ 3

)
. (2.3.14)

Please refer to Appendix 2.7.3 for the proof. Although the upper bound in (2.3.14) is not

tight, it characterizes the key features of the minimum average Gaussian distance, as shown

in Fig. 2.1. Motivated by the upper bound in (2.3.14), we propose an accurate closed-form
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approximation of the d(z?t ) as

d(z?t ) ≈ d̃? = αt

(
c1 log

( 1
αt

)
+ c2

)
, (2.3.15)

where c1 and c2 are obtained as follows. Note that the d(z?t ) only depends on αt. There-

fore, we can express d(z?t ) as a function of αt as d(z?t ) = f (αt) = minzt αt (1 + z2
t ) +

(1− αt)
(

2 (1 + z2
t )Q (zt)−

√
2
π
zte
− z

2
t
2

)
. Since αt ∈ (0, 1] , we can choose c1 and c2 to

minimize the overall approximation error over the range αt ∈ (0, 1] as

(c1, c2) =argmin
c
′
1,c
′
2

N∑
i=1

∣∣∣∣f ( i

N

)
−
(
c
′

1 log
(
N

i

)
+ c

′

2

)
i

N

∣∣∣∣2 .
The results are given by c1 = 0.9554, c2 = 1.0033. With these optimal coefficients, the ap-

proximation in (2.3.15) is very close to d(z?t ) for all possible αt values5, as shown in Fig.2.1.

Therefore, the minimum average Gaussian distance of the weighted l1 norm can be accurately

approximated by the following closed-form formula:

D(z?) ≈ D̃? =
T∑
t=1

βtαt

(
0.9554× log

( 1
αt

)
+ 1.0033

)
. (2.3.16)

In the rest of the chapter, we will fix c1 = 0.9554, c2 = 1.0033.

From Corollary 2.1 and the closed-form approximation ofD(z?) in (2.3.16), the minimum

aNSE can be accurately approximated by the following closed-form:

ãNSE
?

= D̃?

δ − D̃?
=

∑T
t=1 βtαt

(
c1 log

(
1
αt

)
+ c2

)
δ −∑T

t=1 βtαt
(
c1 log

(
1
αt

)
+ c2

) . (2.3.17)

2.3.4 Discussions

Fig. 2.2 illustrates the performance gain of the optimally-tuned weighted LASSO compared

to the standard LASSO [53]. For illustration purposes, we consider two-level PSI with two

PSI component sets S1 and S2 whose size parameters are β1 = 0.1 and β2 = 0.9, respectively.

We can see that the theoretical aNSE prediction matches the simulated aNSE quite well (◦

5Even though the approximation of the minimum average Gaussian distance inspired by the form of upper
bound is very accurate, how to obtain its accurate closed form theoretically would be a challenging problem and
will be left as part of future work.
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Figure 2.1: Comparison of minimal average Gaussian distance and its closed-form approxi-
mation in (2.3.15).

for standard LASSO, ∗ for optimally-tuned weighted LASSO) under moderate SNR and sys-

tem dimensions, even though the conclusions in Corollary 2.1 are derived under asymptotic

regime. Moreover, from Corollary 2.1 and Fig. 2.2, we have the following observations.

2.3.4.1 Phase Transition and Critical Measurements Number

As shown in (2.3.12), the aNSE of the optimally-tuned weighted LASSO exhibits a phase

transition behavior. Specifically, when the measurements number M is larger than the criti-

cal point M̂ , ND?, the aNSE is finite and stable recovery is guaranteed. When the mea-

surements number is approaching the critical point M̂ , the aNSE grows to infinity and it is

impossible to achieve stable recovery. Also, from the separability of the minimum Gaussian

distance in (2.3.13), the critical measurements number M̂ of the optimally-tuned weighted

LASSO can be expressed as M̂ = ∑T
t=1 M̂t, where

M̂t = Nβtd(z?t ) ≈ Nβtαt

(
c1 log

( 1
αt

)
+ c2

)

is the critical measurements number of standard LASSO to recover a Nβtαt sparse signal

with dimensions Nβt.

Compared to the standard LASSO, the critical measurements number of the optimally-

tuned weighted LASSO with PSI is much smaller, and it decreases as the PSI becomes more
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Figure 2.2: aNSE performance for the optimally-tuned weighted LASSO and standard
LASSO. Consider N = 200, the sparsity level K = 20, and there are two partitions S1
and S2 with parameters β1 = 0.1 and β2 = 0.9, respectively. For the proposed algorithm, we
consider two cases when α1 = 0.9 and α1 = 0.6, respectively. The simulated aNSE is given
by simulated NSE with SNR=20 dB for pink circle and star, with SNR=10dB for black circle
and star.

accurate. For example, it can be seen from Fig. 2.2 that the critical measurements number

of the standard LASSO is 66, and it is much larger than that of the optimally-tuned weighted

LASSO, which is about 51 when α1 = 0.6. When the PSI is more accurate, e.g., α1 = 0.9,

the critical measurements number decreases to 31. Therefore, the PSI-aided optimally-tuned

weighted LASSO significantly alleviates the number of measurements required.

2.3.4.2 Optimal LASSO Weights

The optimal weights w? described in (2.3.11) depend on z?, whose elements can be calculated

through the following equation:

(1− αt)
√ 2

π
e−

z?2t
2 − 2z?tQ(z?t )

 = αtz
?
t , (2.3.18)

which is obtained by setting the differential of d(zt) with respect to zt to be 0. Given the par-

titions S1 and S2, Fig. 2.3 shows the value of optimal weights w1 and w2 when PSI accuracy

α1 increases from 0 to 1. We can see that as α1 increases, optimal weight w1 decreases and

w2 increases. When PSI component set S1 has perfect prior support information, i.e., α1 = 1,

25



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α
1

0

5

10

15

20

25

30

35

40

O
pt

im
al

 W
ei

gh
ts

w
2

w
1

Figure 2.3: Optimal weights versus PSI accuracy α1 for the optimally-tuned weighted
LASSO. Consider N = 200, the sparsity level K = 20. And there are two partitions S1
and S2 with parameters β1 = 0.1, β2 = 0.9, respectively. The number of measurements is
80. The simulated aNSE is given by simulated NSE with SNR=20 dB.

the optimal weight w1 = 0. But when 0 < α1 < 1, the weight vector w should be optimally

tuned to minimize the recovery error bound aNSE. Intuitively, we should assign a smaller

weight wt to the t-th PSI component set St when the PSI for this set is more accurate (i.e., αt

is larger), as verified in Fig, 2.3. When α1 = α2 = K/N , the optimal weights w1 = w2 and

the optimally-tuned weighted LASSO reduces to the standard LASSO.

As shown in (2.3.11) and (2.3.17), the optimal weights and minimum aNSE all depend on

the PSI parameters {αt, βt}Tt=1. In the following section, we will discuss how the performance

of the optimally-tuned weighted LASSO will be affected by the PSI qualities.

2.3.4.3 The Noise Effect in the Proposed Algorithm

The noise effect is taken into account in the proposed algorithm as explained in the following

aspects:

• Problem formulation: The weighted LASSO problem in (2.2.6) considers the noise

effect and can be used to recover the sparse signal from noisy measurement.

• Performance analysis: The aNSE analyzed in our work captures the first order ef-

fect of noise on the squared error and it is widely used as a key performance metric
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in the noisy case. Although aNSE is defined in the asymptotic regime as σ → 0 and

itself does not contain the noise variance σ2, it captures the first order effect of noise

on the squared error by characterizing how fast the first order term in the squared er-

ror increases with the noise variance σ2, i.e. SE (w, σ2) = aNSE(w)σ2 + o (σ2) .

Therefore, analyzing the asymptotic performance doesn’t mean that the noise effect is

ignored. On the contrary, we have captured the first order term of SE (w, σ2) with

respect to σ2.

• Determination of the optimal weight: In our work, the optimal normalized weight

w? obtained by minimizing the aNSE already contains the effect of noise in an implicit

way, and the optimal actual weight σw? explicitly contains the standard deviation of

the noise σ. Specifically, minimizing aNSE is equivalent to minimizing the first order

Taylor expansion of SE(w, σ2) for any finite σ > 0, and first order Taylor expansion

of SE is an upper bound of SE [17]. Therefore, minimizing aNSE can be viewed as

minimizing the worst case SE over unknown noise variance. Although the optimal

normalized weight w? derived by minimizing the aNSE performance does not contain

the noise variance, it still incorporates the first order effect of noise by characterizing

how fast the actual weight σw should increase with the standard deviation of the noise

σ in order to achieve the best aNSE performance for the weighted LASSO algorithm.

In summary, the optimal normalized weight vector derived in our paper is a result of incor-

porating the noise effect into our algorithm design and performance analysis by choosing

proper problem formulation for the sparse signal recovery (i.e., the weighted LASSO formu-

lation) and performance metric for optimizing the normalized weight vector (i.e., the aNSE

performance). Simulations show that the proposed weighted LASSO algorithm with the op-

timal normalized weights achieves better performance than the OptWeight-`1-min algorithm

in [46], which does not consider the effect of noise. This verifies that the proposed algorithm

can indeed incorporate the noise effect and reduce the reconstruction error for the noisy case.

Therefore, the noise effect plays a crucial role in the optimal weight vector in our work.

2.4 Impact of PSI Quality On the Performance

In this section, we analyze the impact of PSI quality on the performance of the optimally-

tuned weighted LASSO algorithm. The PSI quality depends on how much information it can
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provide about the position of the support. Specifically, when there are more partitions (larger

T ) and αt’s deviate more from the mean K/N (e.g., in each partition, αt is either closer to 1

or much smaller than K
N

), the PSI quality is higher. But when all αt’s are equal to the mean

value K/N , we cannot obtain more prior information other than the sparsity level in the large

system limit. Note that when αt is smaller than K/N and close to 0, we can still have some

prior information that the support is most likely outside the set St. The above intuition is

formally proved in the following theorems.

2.4.1 Performance Comparison with Different Prior Information

We analyze the approximated minimum aNSE performance given in (2.3.17) in the following

theorem which has been shown to be accurate by Fig. 2.1.

Theorem 2.2 (Performance of optimally-tuned weighted LASSO with more prior informa-

tion). Given a partition S = {St} Tt=1 of the complete index set with parameters {αt, βt} Tt=1

defined in (2.2.1), we further divide the set St for t ∈ T into Jt partitions {St,j} Jtj=1, where

T ⊆ [1, · · · , T ], and denote the set of parameters induced by the further partition as {αt,j, βt,j}Jtj=1

for t ∈ T with the same definition as in (2.2.1). We denote the approximated minimum

aNSE of the optimally-tuned weighted LASSO algorithm corresponding to the new parti-

tions S =
{{
{St,j} Jtj=1

}
t∈T

, {St}t∈Tc
}

and the original partitions S as ãNSE
?

(S) and

ãNSE
?

(S), respectively, then we have the following result:

ãNSE
?

(S) ≤ ãNSE
?

(S), (2.4.1)

where the equality is obtained if and only if αt,j = αt, for all j ∈ {1, · · · , Jt} and t ∈ T .

Please refer to Appendix 2.7.4 for the proof.

This theorem shows that when we have more prior information about where the support

is located, the optimally-tuned weighted LASSO algorithm can perform better. Based on

Theorem 2.2, we compare the approximated minimum aNSE performance of the optimally-

tuned weighted LASSO and standard LASSO in the following corollary. The approximated

minimum aNSE of standard LASSO is given by (2.3.17) with T = 1, βt = 1, αt = K/N .

Corollary 2.2 (Comparison of the optimally-tuned weighted and standard LASSO). Given

the PSI I =
{
K, {St, αt, βt}Tt=1

}
, we denote the approximated minimum aNSE of the optimally-

tuned weighted LASSO which exploits the PSI I as ãNSE
?

(I), and denote the approximated
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minimum aNSE of the standard LASSO which does not exploit the PSI as ãNSE
?

0. Then we

have the following result:

ãNSE
?

(I) ≤ ãNSE
?

0. (2.4.2)

where the equality is obtained if and only if αt = K/N , for all t ∈ {1, · · · , T}.

The proof of Corollary 2.2 is similar to the proof of Theorem 2.2. Please refer to Appendix

2.7.4 for the details.

Corollary 2.2 shows that the aNSE performance of the PSI-aided optimally-tuned weighted

LASSO algorithm is always better than the standard LASSO except for the case when αt =

K/N for all t and the two algorithms achieve the same aNSE.

2.4.2 Examples

In the following, we use several examples to illustrate the above conclusions. Consider the

case when N = 200, M = 150 and K = 60. We compare the minimum aNSE performance

when different PSI is provided.

Firstly, we compare the aNSE performance of the optimally-tuned weighted LASSO

with the standard LASSO when there are two partitions: S = {S1, S2} whose sizes are

β1 = 0.3 and β2 = 0.7, respectively. Fig. 2.4 shows that the approximated minimum aNSE

is very close to the theoretical minimum aNSE. Therefore, in the following examples, we

only present the results for the theoretical minimum aNSE for compactness. Also, Fig. 2.4

shows that the minimum aNSE of the optimally-tuned weighted LASSO is not worse than

the standard LASSO, and when α1 = α2 = K/N , they have same aNSE performance. This

verifies the result in Corollary 2.2.

Next, we divide the first PSI component set S1 in the partition S = {S1, S2} into two

subsets and get a new partition S = {S1,1, S1,2, S2}with the parameters β1,1 = 0.1, β1,2 = 0.2

and β2 = 0.7, respectively. Further partition induces two new parameters α1,1 and α1,2. We

compare the minimum aNSE performance of the optimally-tuned weighted LASSO under

two different partitions S and S, when α1,1 and α1,2 are changing, α2 are fixed. It is shown

that the performance of the optimally-tuned weighted LASSO with partition S is always

better than that with S , and only when α1,1 = α1,2 = α1, they have the same performance.

For example, the minimum aNSE of S versus α1,1 and α1,2 when α2 is fixed to 3/14 is shown

in Fig. 2.5 by the green curve. The minimum aNSE of S when α1 = 0.5 and α2 = 3/14 is
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Figure 2.4: Minimum aNSE performance versus α1 for the optimally-tuned weighted LASSO
and standard LASSO. Consider N = 200, K = 60, M = 150, and 2 partitions with parame-
ters β1 = 0.3 and β2 = 0.7.

shown in Fig. 2.5 by the red star, which is the intersection point of the green curve and the red

star curve. It shows that when α1,1 6= α1,2, the minimum aNSE for partition S is smaller than

that for partition S. When α1,1 = α1,2 = 0.5, the minimum aNSE for partition S achieves the

largest value, which equals the minimum aNSE for partition S. Fig. 2.5 also shows the cases

when α2 is fixed to be other values. They all come to the same conclusion which is consistent

with Theorem 2.2.

2.5 Simulation Results

In this section, we present the results of some numerical experiments to verify the practical

performance of the proposed optimally-tuned weighted LASSO algorithm. Assume thatN =

200, and the sparsity level K = 20. We consider the following baselines:

• Baseline 1 (Std. LASSO): This is a standard LASSO algorithm [?], which does not

exploit the PSI, and l1 norm is used as the penalty function.

• Baseline 2 (Modified-CS): The modified CS proposed in [47] incorporates the esti-

mated PSI and minimizes the weighted l1 norm with zero weight on the estimated

support part.
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weighted LASSO. Consider N = 200, K = 60, M = 150, and 3 partitions with param-
eters β1,1 = 0.1, β1,2 = 0.2 and β2 = 0.7.

• Baseline 3 (OptWeight-l1-min): This is a naive extension of the optimally-tuned weighted

l1 norm minimization proposed in [46], where the weights are tuned to optimize the per-

formance for the noiseless case. For the extension to the noisy case, we use the same

weight strategy as in [46], but modify the linear constraint y = Ax to be ||y−Ax|| ≤

ε, where ε =
√
M(1 + 0.1)σ2 is determined by the noise variance σ2.

• Baseline 4 (AdaptiveWeight-`1-min): This is an extension of the weighted `1 norm min-

imization proposed in [43] from the noiseless case to noisy case by changing the linear

constraint y = Ax to be ||y−Ax|| ≤ ε, where ε =
√
M(1 + 0.1)σ2 is determined by

the noise variance σ2. We adopt the same weight policy proposed in [43].

2.5.1 Impact of Prior Information Accuracy On the Performance

We consider the case of two PSI component sets S1 and S2 with β1 = 0.1 and β2 = 0.9.

We set M to be100, and the simulation SNR to be 20 dB. In Fig. 2.6, we compare the

MSE performance of different algorithms versus the PSI accuracy α1. For Modified-CS and

AdaptiveWeight-`1-min baseline, set S1 is considered as the given estimated support. It can

be observed that the MSE of the proposed algorithm is increasing when α1 is smaller than

K/N = 0.1, and decreasing when α1 is larger than K/N = 0.1. And when α1 = K/N ,

31



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α
1

10-5

10-4

10-3

M
S

E
Modified-CS

Std. LASSO

AdaptiveWeight-l
1
-min

OptWeight-l
1
-min

Proposed
optimally-tuned
weighted LASSO

Figure 2.6: MSE versus PSI accuracy α1 when there are two PSI component sets S1 and S2
with β1 = 0.1 and β2 = 0.9. Consider N = 200, K = 20, M = 100, and the simulation
SNR is 20 dB.

the proposed optimally-tuned weighted LASSO performs the worst, and is the same as stan-

dard LASSO. This is consistent with the conclusion in Corollary 2.2. It also can be seen that

the PSI-aided baselines outperform the standard LASSO when the PSI accuracy α1 is larger

than a critical point, which are 0.4, 0.43 and 0.5, respectively for the OptWeight-l1-min,

AdaptiveWeight-`1-min and Modified-CS baselines. When PSI accuracy is below these criti-

cal values, their respective performances are even worse than the standard LASSO. However,

proposed algorithm never performs worse than the standard LASSO, and when α1 is deviated

from 0.1, the performance gain increases. When α1 = 1, the PSI-aided algorithms have same

performance, the 0-1 weight strategy is optimal. Overall speaking, proposed optimally-tuned

weighted LASSO is more robust to the PSI accuracy due to the optimal tuning of the LASSO

weights. Also, our proposed algorithm achieves better performance compared to various

baselines under any PSI accuracy.

2.5.2 Impact of Measurements Number on the Performance

Fig. 2.7 illustrates the MSE performance of different algorithms when the number of mea-

surements changes. The simulation SNR is 20 dB. In order to see the impact of PSI quality

on the performance, we consider two types of PSI:
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Figure 2.7: MSE versus measurements number. Consider N = 200, K = 20 and the simula-
tion SNR is 20 dB and two types of PSI.

PSI-Type1: There are two partitions {S1, S2} whose sizes are β1 = 0.3 and β2 = 0.7,

respectively. The PSI accuracies in each PSI component set are α1 = 0.3 and

α2 = 1/70, respectively.

PSI-Type2: There are four partitions {S1, S2, S3, S4} whose sizes are β1 = 0.05, β2 =

0.1, β3 = 0.15 and β4 = 0.7, respectively. The PSI accuracies in each PSI

component set are α1 = 0.8, α2 = 0.4, α3 = 1/15 and α4 = 1/70, respectively.

For the Modified-CS and AdaptiveWeight-`1-min baselines, set S1 is considered as the given

estimated support in PSI-Type1. It can be observed that the MSE decreases as the number of

measurements increases. The proposed algorithm achieves the best performance among all of

the schemes. Comparing the different types of PSI, the proposed optimally-tuned weighted

LASSO and OptWeight-`1-min both can benefit from the high quality PSI PSI-Type2. This

verifies the conclusion in Theorem 2.2. However, the proposed algorithm achieves better

performance than OptWeight-`1-min for each PSI type.

2.5.3 Impact of SNR on the Performance

In Fig. 2.8, we compare the MSE performance of different schemes versus simulation SNR

whenM = 80. We also consider two types of PSI, as above. From this figure, we can see that
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Figure 2.8: MSE versus simulation SNR. Consider N = 200, K = 20, M = 80, and two
types of PSI.

the proposed algorithm achieves substantial performance gain compared to various baselines

for each type of PSI. Also, when we have more prior information about where the support is

situated, the proposed algorithm can perform better. This verifies the result in Theorem 2.2.

Remark 2.3 (MSE performance comparison with OptWeight-`1-min in [46]). In [46], the

optimal weight is derived by minimizing the measurement threshold, i.e., the critical number

of measurements required for success recovery of weighted `1 minimization problem with

noiseless measurements, which may not be the optimal for the MSE performance. However,

the proposed weight policy is optimal in the sense that it minimizes the aNSE performance,

which provides a good approximation of the (scaled) MSE. As a result, even at high SNR

regime (close to noiseless case), the proposed optimally-tuned weighted LASSO algorithm

still performs better than the OptWeight-`1-min baseline.

2.5.4 Simulation Results for Massive MIMO Channel Estimation

In this subsection, we will present the numerical simulation results when the proposed optimally-

tuned weighted LASSO is applied to the massive MIMO channel estimation problem, as

shown by the Example 1 in Section 2.2.2. We assume that the BS has N = 256 antennas

and transmits M training sequences for downlink channel estimation. The pilot matrix P
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Figure 2.9: MSE versus simulation SNR. Consider N = 256 transmit antennas, M = 100
training sequences, L = L̂ = 32, Lc = 24.

is chosen to be i.i.d. Gaussian matrix. The resulting measurement matrix A is also i.i.d.

Gaussian matrix. We set the channel support size equal to estimated channel support size,

L = L̂ = 32, the common support size Lc = 24. This corresponds to the two-level PSI

model, where α1 ≈ 0.75, α2 ≈ 1/28, β1 = 0.125, β2 = 0.875.

In Fig. 2.9 and Fig. 2.10, we compare the MSE performance of different schemes versus

the simulation SNR and number of training sequences M . It can be seen that the proposed

optimally-tuned weighted LASSO achieves better performance over various baselines under

any SNR value and training sequences number.

2.6 Summary

We propose an optimally-tuned weighted LASSO algorithm to recover the compressed signal

from a linear noisy model with statistical multi-level PSI and apply the proposed algorithm

to massive MIMO channel estimation problem. By optimally tuning the LASSO weights

according to the PSI accuracy in each PSI component set, the proposed algorithm can fully

exploit the multi-level PSI to significantly improve the recovery performance and alleviate

the requirement of the measurements number. We also analyze the performance of the pro-

posed algorithm, and derive a closed-form, accurate bound on the recovery error, which helps
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Figure 2.10: MSE versus number of training sequences M . Consider N = 256 transmit
antennas, L = L̂ = 32, Lc = 24. Simulation SNR is15 dB.

to dimension the minimum number of measurements needed for stable recovery. Then we an-

alyze the impact of PSI quality on the performance, which characterizes the type of PSI the

proposed algorithm can benefit from. To the best of our knowledge, this is the first work

to obtain the optimal LASSO weights and the associated closed-form performance analysis

for PSI-aided LASSO algorithm in the presence of noise. Both the analysis and simulations

show that the proposed optimally-tuned weighted LASSO algorithm outperforms the various

baselines.

2.7 Appendix

2.7.1 Proof of Lemma 2.1

According to the definition in (2.3.5), for i ∈ St,∀t ∈ {1, · · · , T},

dist
(
h, ∂ ‖x?‖1,z

)
i

=


h[i]− zt · sign (x?[i]) if x?[i] 6= 0

shrinkzt (h[i]) if x?[i] = 0
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where shrink function is defined as following:

shrinkzt (h) =



h− zt if h > zt

0 if |h| ≤ zt

h+ zt if h < −zt

.

Consequently, after taking expectation, E
[
(h[i]− zt · sign (x?[i]))2

]
= 1 + z2

t , and

E
[
(shrinkzt (h[i]))2

]
=
∫ ∞
zt

√
2
π

(h− zt)2 e−
h2
2 dh

= 2
(
1 + z2

t

)
Q (zt)−

√
2
π
zte
− z

2
t
2 ,

where Q(zt) , 1√
2π
∫∞
zt

exp
(
−u

2

)
du. Therefore, the average Gaussian distance of weighted

`1 norm is

D (z) = 1
N
Eh

[
dist2

(
h, ∂ ‖x?‖1,z

)]
=

T∑
t=1

βtαt
(
1 + z2

t

)
+ βt (1− αt)

2
(
1 + z2

t

)
Q (zt)−

√
2
π
zte
− z

2
t
2

 .

2.7.2 Proof of Theorem 2.1

We rewrite the linear model (2.1.1) as y = Ax? + σv, where the entries of v are i.i.d.

N (0, 1). Then we rewrite Problem (2.2.6) in a more convenient form for analysis,

ê := argmin
e

1
2 ||Ae− v||2 + 1

σ
||x? + σe||1,w, (2.7.1)

by changing the decision variable to be the normalized error vector e = (1/σ) (x− x?),

substituting y = Ax? + σv and rescaling the objective value by a factor of 1/σ2. Note that

||ê||2 = NSE(w, σ). We can handle Problem (2.7.1) by analyzing a different and simpler

optimization problem based on the CGMT [56]. We summarize the result of the CGMT in

the following lemma by following the similar proof to that of Lemma 1.2 in [17].

Lemma 2.3 (CGMT for Weighted LASSO). Suppose the measurement matrix A has i.i.d.
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Gaussian entries with zero mean and unit variance. Let

f̃(a, b) :=
√
a2 + 1b− ab

√√√√N

M
D

(
1√
Mb

w
)
− b2

2 , (2.7.2)

and (a?, b?) := arg min0≤a≤A max0≤b≤B f̃(a, b), where A and B are sufficiently large con-

stants independent of M,N . Let ê be the minimizer of (2.7.1). As M,N → ∞ with
M
N
→ δ ∈ (0,∞), we have

lim
σ→0
||ê|| P−→ a?.

Based on Lemma 2.3, in a large system limit, the aNSE converges to minimizer a? of

the deterministic minimization in (2.7.2). To compute a?, we make use of the duality (the

objective function is convex in a, and concave in b). We first fix b, and differentiate the

objective f̃(a, b) w.r.t. a and set it to 0 to find the minimizer a?, which is given by

a? =

√√√√√ D
(

1√
Mb

w
)

δ −D
(

1√
Mb

w
) . (2.7.3)

Substituting (2.7.3) back to (2.7.2), and setting the differential w.r.t. b to be 0, yield that

b? =
δ −D

(
1√
Mb?

w
)
−G

(
1√
Mb?

w
)

√
δ
(
δ −D

(
1√
Mb?

w
)) . (2.7.4)

According to the definition of map Λ, the optimal b? satisfies the following equation:

Λ−1 (w) = 1√
Mb?

w.

Substituting the optimal b? to the formula of a?, and based on Lemma 2.3, the aNSE can be

expressed as (2.3.10) in a large system limit.

2.7.3 Proof of Lemma 2.2

Based on the Lemma H.1 in [57], we have

2
(
1 + z2

t

)
Q (zt)−

√
2
π
zte
− z

2
t
2 ≤ 2

z2
t + 1e

− z
2
t
2 .
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Therefore,

d(zt) ≤ αt(1 + z2
t ) + (1− αt)

2e−
z2t
2

z2
t + 1 ≤ αt(1 + z2

t ) + 2e−
z2t
2 .

Then

d(z?t ) ≤ d

(√
2 log

( 1
αt

))
≤ αt

(
2 log

( 1
αt

)
+ 3

)
.

2.7.4 Proof of Theorem 2.2

The ãNSE
?

in (2.3.17) is an increasing function of D̃? in (2.3.16), we can compare D̃?for

different prior information. We denote the approximated minimum Gaussian distance corre-

sponding to partition S and S as D̃?
(
S
)

and D̃? (S), respectively. We denote d̃? in (2.3.15)

as d̃?(αt), which is a function of αt. Then

D̃? (S) =
∑
t∈T

At(αt) +
∑
t∈Tc

βtd̃
?(αt), (2.7.5)

D̃?
(
S
)

=
∑
t∈T

At(αt,1, · · · , αt,Jt−1) +
∑
t∈Tc

βtd̃
?(αt), (2.7.6)

where At and At are given as follows:

At(αt) = βtd̃
?(αt) (2.7.7)

At(αt,1, · · · , αt,Jt−1) =
Jt−1∑
j=1

βt,j d̃
?(αt,j) +

βt − Jt−1∑
j=1

βt,j

 d̃? (βtαt −∑Jt−1
j=1 βt,jαt,j

βt −
∑Jt−1
j=1 βt,j

)
.

(2.7.8)

For each t ∈ T , we compare the items At and At. Firstly, we take the partial derivative of At

w.r.t. αt,1, · · · , αt,Jt−1, respectively, and we can obtain

∂At
∂αt,j0

= βt,j0c1log

 βtαt −
∑Jt−1
j=1 βt,jαt,j

αt,j0
(
βt −

∑Jt−1
j=1 βt,j

)
 ,
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for j0 ∈ Jt, where Jt = {1, · · · , Jt − 1}. By setting ∂At/∂αt,j0 = 0, we conclude that if

αt,j0 < B, At is an increasing function of αt,j0; if αt,j0 > B, At is a decreasing function of

αt,j0 . When αt,j0 = B, At achieves the largest value w.r.t. argument αt,j0 . B is a function of

variables {αt,j, j ∈ Jt\j0} and is given as follows:

B (αt,j, j ∈ Jt\j0) =
βtαt −

∑
j∈Jt\j0 βt,jαt,j

βt −
∑
j∈Jt\j0 βt,j

.

Then the critical values which maximize the At should satisfy the following equations:



α?t,1 = B
(
α?t,j, j ∈ Jt\1

)
(1)

...
...

α?t,Jt−1 = B
(
α?t,j, j ∈ Jt\Jt − 1

)
(Jt − 1)

By substitution method, we can solve the equation set, and get that

α?t,1 = α?t,2 = · · · = α?t,Jt−1 = αt.

Then we have α?t,Jt = αt. Therefore, when αt,j = αt, for j ∈ {1, · · · , Jt}, At is maximized,

and the maximum value is

At(α?t,1, · · · , α?t,Jt−1) = βtd̃
?(αt) = At(αt).

Therefore, At ≤ At, for all t ∈ T , and the equality is obtained if and only if αt,j = αt, for all

j ∈ {1, · · · , Jt} and t ∈ T .
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Chapter 3

Dynamic Turbo-OAMP for Downlink

FDD-Massive MIMO Channel Tracking

3.1 Introduction

In an FDD system, if we use conventional CE methods, such as least squares (LS) and mini-

mum mean square error (MMSE) [60] to estimate the downlink channel at the user side, the

number of pilot symbols should be at least the same as the number of antennas M at the BS,

which would be prohibitively large for massive MIMO system. Various CS-based downlink

CE schemes have been developed to exploit the inherit sparsity of massive MIMO channels

so as to reduce the pilot training overhead, such as OMP and CoSaMP [61]. Several channel

estimation algorithms exploit the spatial and/or temporal correlation of the channel to fur-

ther reduce the pilot overhead and improve the real-time channel tracking performance, as

summarized below.

• Algorithms exploiting the spatial correlation1 of the channel support: In [7], it is

shown that the angular domain channel support has a burst structure due to the phys-

ical scattering structure in the environment, and this burst sparsity structure has been

exploited to design a burst-LASSO algorithm in [7]. Recently, a structured Turbo-CS

algorithm with Markov channel prior was proposed in [25] to exploit the clustered

sparse structure in the spatial domain for massive MIMO channel estimation.

1In this chapter, spatial correlation refers to the structured spatial sparsity of a massive MIMO channel in
which the non-zero elements of the angular domain channel tend to concentrate on a few clusters.
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• Algorithms exploiting the temporal correlation of the channel: Since the propa-

gation environment is dynamically changing with the temporal correlation, the previ-

ously estimated channel can provide some prior information about the current channel.

In [62], the channel is modeled by a Markov process and the classical Kalman filter

is used to track the channel. However, the method in [62] cannot exploit the sparsity

in massive MIMO channels. In [34–36] and [37], both the prior information obtained

from the temporal correlation and the channel sparsity have been exploited to design

the prior-aided sparse channel tracking schemes.

• Algorithms exploiting the frequency (delay)-temporal correlation of the channel

support for OFDM systems: In [9] and [10], adaptive channel estimation schemes

are designed for broad band systems where orthogonal frequency-division multiplexing

(OFDM) is used. They assume that the sparsity structure is shared by subchannels of

different subcarriers (or delay domain channels between the user and different transmit

antennas at the BS), and such sparsity is almost unchanged in multiple time blocks.

However, the existing algorithms have the following drawbacks. First, the algorithms ex-

ploiting the spatial and/or temporal correlation of the channel support rely on some restrictive

assumptions. For example, the burst LASSO algorithm in [7] only works when all bursts of

the channel vector have similar sizes, which is not satisfied by practical massive MIMO chan-

nels with random burst sizes. [9] and [10] assume that the channel supports across multiple

time slots are approximately the same. However, in practice, channel support is time-varying

and may undergo a sudden change within two adjacent time slots. Second, many existing

algorithms [9, 35] are batch algorithms which require the collection of measurements across

multiple time slots to recover a batch of unknown signals simultaneously. Such batch algo-

rithms are offline, slow, and require linearly increasing memory with the sequence length.

In practice, it is desirable to design recursive algorithms, which only use the previous signal

estimate and current measurements to estimate the current signal, and thus have lower com-

putation complexity and storage requirements. Third, in this chapter, we model the fading

channel as a dynamic process, and at the same time, maintain spatial sparsity structures as

channel evolves over time. Spatial sparsity structure means that the non-zero elements of

the angular domain channel tend to concentrate on a few clusters; a dynamic process means

the probabilistic dependency of the channels over time. Because these characteristics will

cause the sparsity pattern of the angular domain channel spatially and temporally correlated,
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we call it as two-dimensional (2D) dynamic sparsity in the rest of the chapter. The existing

channel tracking works also exploited the dynamic sparsity. However, [9,10,36,63] failed to

model the dynamic evolution of the channel, and just assumed the common sparsity across

time or the prior information quality bound; [34, 35, 37, 62, 64–66] considered the dynamic

evolution of the channel, but they failed to exploit the spatial sparsity structure while the

channel evolves. Therefore, there is no existing work which exploited the structured spa-

tial sparsity and the probabilistic temporal dependency of the channels jointly to track the

dynamic channels.

In this chapter, we consider downlink FDD-massive MIMO system and propose a sys-

tematic framework called Dynamic Turbo Orthogonal Approximate Message Passing (D-

TOAMP) to recursively track time-varying channels with low pilot overhead and improved

performance. The main contributions are summarized below.

• Realistic Two-dimensional Markov Channel Model: We propose a new statistical

model called the 2D-MM to capture the 2D dynamic sparsity of massive MIMO chan-

nels. The 2D-MM has the flexibility to model different propagation environments that

occur in practice. Moreover, we verify the validity of the 2D-MM using realistic chan-

nel models. To the best of our knowledge, this is the first work which uses a 2D-MM

to model the 2D dynamic sparsity of sparse massive MIMO channels.

• Design of Dynamic Turbo-OAMP Algorithm: By combining the turbo approach and

the OAMP [21–23], we propose an efficient SPMP algorithm to recursively track the

dynamic channels with a 2D-MM prior. The OAMP in [21–23] only works for i.i.d.

priors. We extend the OAMP to D-TOAMP, which works for the 2D-MM prior.

The rest of this chapter is organized as follows. In Section 3.2, we present the system

model. In Section 3.3, we introduce the 2D-MM channel prior. In Section 3.4, we present

the sparse channel tracking formulation. In Section 3.5, we present the proposed D-TOAMP

algorithm and give a complexity analysis. Simulation results and summaries are given in

Section 3.6 and 3.8, respectively.
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3.2 System Model

3.2.1 Downlink Training

Consider a massive MIMO system with one BS serving a single antenna user2. The BS is

equipped with M � 1 antennas. To estimate the downlink channel hHt ∈ C1×M at time

slot t, the BS transmits P pilot sequences up,t ∈ CM×1, p = 1, · · · , P . The received signal

yHt ∈ C1×P at time slot t is

yHt = hHt Ut + nHt , (3.2.1)

where Ut = [u1,t, · · · ,uP,t] ∈ CM×P is the pilot matrix, and nt ∼ CN (0, σ2
eI) is the additive

complex Gaussian noise.

In this chapter, we consider massive MIMO at the BS side. For large number of anten-

nas, the spatial resolution of the angular basis increases. Hence, under limited scattering

environment, the channel will be sparse under the angular basis.

3.2.2 Massive MIMO Channel Model

We consider flat fading massive MIMO channel with limited scattering around the BS. For

clarity, we focus on the case when the BS is equipped with a half-wavelength space ULA. In

this case, the downlink channel vector ht ∈ CM can be modeled as [2]

ht =
Nc∑
c=1

Nb∑
b=1

at,c,ba (ϑt,c,b) , (3.2.2)

where Nc stands for the number of scattering clusters, Nb stands for the number of sub-

paths per cluster, at,c,b and ϑt,c,b stand for the complex channel gain and the azimuth AoD

corresponding to the b-th sub-path in the c-th scattering cluster at time slot t. The steering

vector a (ϑ) ∈ CM for ULA is

a (ϑ) =
[
1, e−jπ sin(ϑ), · · · , e−jπ(M−1) sin(ϑ)

]T
.

2Note that we focus on downlink channel estimation, where the base station sends some common pilots
for all users to estimate their own channel. In a multi-user downlink massive MIMO system, each user can
independently perform channel tracking using the proposed D-TOAMP based on the received signal from the
common pilots. Therefore, without loss of generality, we can focus on the algorithm design for a reference user,
and the proposed D-TOAMP can be directly applied to a multi-user massive MIMO system.
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3.2.3 Off-Grid Basis for Massive MIMO Channels

In this subsection, we describe the angular domain channel representation at time slot t. For

ease of notation, we drop the time index t. The true AoDs could be denoted as {ϑ1, · · · , ϑL}

where L = NcNb. Let
{
ϑ̂1, · · · , ϑ̂M

}
be a uniform sampling grid, which uniformly covers

the angular domain
[
−π

2 ,
π
2

]
. In practice, the true AoDs usually do not lie exactly on the

grid points. To handle the direction mismatch, we adopt an off-grid model. Specifically, if

ϑl /∈
{
ϑ̂1, · · · , ϑ̂M

}
, and ϑ̂ml , ml ∈ {1, · · · ,M} is the nearest grid point to ϑl, we write ϑl

as

ϑl = ϑ̂ml + βml , (3.2.3)

where βml is the off-grid gap. Then we have a (ϑl) = a
(
ϑ̂ml + βml

)
. The downlink channel

h in (3.2.2) has a sparse representation with off-grid basis as given by

h = A (β) x, (3.2.4)

where β = [β1, · · · , βM ]T , A (β) =
[
a
(
ϑ̂1 + β1

)
, · · · , a

(
ϑ̂M + βM

)]
, x ∈ CM is the

sparse angular domain channel, and

βml =


ϑl − ϑ̂ml , l = 1, · · ·L

0, otherwise
. (3.2.5)

Note that with the off-grid basis, the model could significantly alleviate the direction mis-

match because there always exists some βml making (3.2.3) hold exactly.

We can also obtain similar sparse representation with off-grid basis for more general 2D

antenna arrays. In this case, the steering vector a (ϑ, ϕ) can be expressed as a function of

the azimuth angle ϑ and elevation angle ϕ. Please refer to [27] for the detailed expression of

a (ϑ, ϕ). In this case, the downlink channel vector ht ∈ CM can be modeled as [27]

ht =
L∑
l=1

ala (ϑl, ϕl) , (3.2.6)

where L stands for the total number of sub-paths, al, ϑl, ϕl stand for the complex channel

gain, the azimuth AoD, and elevation AoD corresponding to the l-th sub-path. Then the

downlink channel h in (3.2.6) also has a sparse representation with off-grid basis as given by
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Figure 3.1: Two-dimensional Markov channel model

h = A (β, ϕ̂) x, where A (β, ϕ̂) =
[
a
(
ϑ̂1 + β1, ϕ̂1

)
, · · · , a

(
ϑ̂M + βM , ϕ̂M

)]
,

ϕ̂ml =


ϕl, l = 1, · · ·L

0, otherwise
,

the definition of ml can be found in (3.2.3). The parameters (β, ϕ̂) could be learned through

the EM framework in the proposed D-TOAMP algorithm.

The proposed algorithm in this chapter can be applied to general array geometry at the

BS with an invertible array response matrix A (0,0). For a ULA with half-wavelength inter

antenna spacing, the array response matrix A with β = 0 is a DFT matrix [9, 36], which is

invertible.

3.3 Two-Dimensional Markov Channel Model

Using the angular domain channel representation, the downlink channel at time slot t can be

expressed as

ht = A (βt) xt, (3.3.1)

where xt is the angular domain channel vector at time slot t.

The channel model in (3.3.1) lacks a probability model for xt. Such a probability model

provides the foundation for exploiting the 2D dynamic sparsity of massive MIMO channels.

In existing work, there are some attempts to exploit the sparsity for massive MIMO CE under

a very simple assumption for i.i.d. sparsity [61]. However, in practice, due to the clustered
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scattering, the support of the massive MIMO channels will not be i.i.d. distributed. In [7],

a burst sparsity is introduced to account for the clustered scattering. However, this model

is deterministic and cannot capture a more complicated clustered scattering structure with

random cluster sizes and locations. Furthermore, due to slowly changing propagation envi-

ronment, the dynamic scattering structures are temporally correlated. A previous estimated

channel can provide prior information to enhance the current CE efficiency [9, 10, 34–37];

however, the assumptions of the deterministic support structure shared by consecutive time

slots in [9, 10] and the prior information quality bound in [36] are too restrictive.

Challenge 1: Propose a probabilistic channel model to capture a more realistic 2D dynamic

sparsity of the massive MIMO channels.

In this section, we introduce a 2D Markov model to capture a more realistic 2D dynamic

sparsity of the massive MIMO channels. Fig. 3.1 illustrates the high level structure of the

2D-MM for the massive MIMO channels x1, · · · ,xT .

Let Ωt denote the index set of non-zero elements of xt, which is called the channel support

at time slot t. In order to characterize the 2D dynamic sparsity of a dynamic channel x(T ) =

{x1, · · · ,xT}, we adopt a probabilistic signal model with two hidden random processes

s(T ) = {s1, · · · , sT} and θ(T ) = {θ1, · · · ,θT}. The binary vector st = [st,1, · · · , st,M ]T ∈

{0, 1}M , with st,m = 1 if m ∈ Ωt, and st,m = 0 otherwise, represents the hidden support

vector at time slot t, which describes the 2D dynamic sparsity of the channel sparsity pattern.

The complex-valued vector θt = [θt,1, · · · , θt,M ]T ∈ CM with θt,m = xt,m if st,m = 1 repre-

sents the hidden value vector at time slot t, which characterizes the temporal correlation of

the channel coefficients. The dynamic channel can be modeled as

xt,m = st,m · θt,m, t = 1, · · · , T, 1 ≤ m ≤M, (3.3.2)

where st,m denotes whether there is an active path from the m-th AoD direction in the t-th

time slot at the BS, and θt,m denotes the corresponding complex path gain. Then the 2D-MM

channel prior distribution (joint distribution of x(T ), s(T ),θ(T )) is given by

p
(
x(T ), s(T ),θ(T )

)
= p

(
x(T )

∣∣∣s(T ),θ(T )
)

︸ ︷︷ ︸
channel vector

p
(
s(T )

)
︸ ︷︷ ︸

hidden support

p
(
θ(T )

)
︸ ︷︷ ︸

hidden value

, (3.3.3)

where the probability model for channel vectors x(T ) is conditioned on the hidden support
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Figure 3.2: Illustration of the 2D dynamic sparsity of the massive MIMO channel for T = 2.
Due to limited and clustered scattering at the BS, the hidden support vector st will be sparse
with clustered non-zero elements. Due to the slowly changing scattering environment, the
hidden support vector st and hidden value vector θt will be temporally correlated.

vectors and hidden value vectors, the hidden support vectors s(T ) form a 2D-MM, and the

hidden value vectors θ(T ) form a Gauss-Markov process, as detailed below.

3.3.1 Probability Model for Channel Vector

The conditional prior p
(
x(T )

∣∣∣s(T ),θ(T )
)

is given by

p
(
x(T )

∣∣∣s(T ),θ(T )
)

=
T∏
t=1

M∏
m=1

p (xt,m|st,m, θt,m)︸ ︷︷ ︸
ft,m(xt,m,st,m,θt,m)

=
T∏
t=1

M∏
m=1

δ (xt,m − θt,mst,m) , (3.3.4)

where δ (·) is the Dirac delta function. Conditioned on s(T ),θ(T ), xt,m’s are independent. By

definition, st,m = 0 sets xt,m = 0, while st,m = 1 sets xt,m = θt,m.

The 2D-MM channel is motivated by the physical propagation mechanism of radio waves.

Physically, each Tx scatterer at the BS side corresponds to an AoD, as shown in Fig. 3.2. If

them-th AoD path is visible to the user (i.e., the signal of them-th AoD path reflected/scattered

from the Tx scatterer can reach the user), the m-th element of angular domain channel vec-

tor xt will be non-zero. In practice, there are limited Tx scatterers at the BS, i.e., the BS is

elevated high or the carrier frequency is high, so only part of the AoD paths can reach the

user. The hidden support vector st represents the AoD paths that can be seen by the user.

Moreover, since we consider a channel tracking problem where an invisible AoD path at the

current time slot may become visible at the next time slot (and vice-versa), it is necessary to

use a hidden value vector θt to model the path gains of all the M potential AoD paths, as

shown by [34] and [35]. Therefore, it is natural to model the actual channel vector xt as the
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product of st and θt.

3.3.2 Two-Dimensional Markov Model of Hidden Support Vector

Due to the clustered structure of the scatterers at the BS side, the non-zero elements in st
will concentrate on a few clusters [7], where each cluster corresponds to a transmit scattering

cluster. This spatially clustered structure implies that st,m depends on st,m−1, e.g., if st,m−1 =

1, then there is a higher probability that st,m is also 1. Moreover, it has been verified in [34]

and [35] that the channel supports often change slowly over time, which implies that st,m

also depends on st−1,m, e.g., if st−1,m = 1, then there is a higher probability that st,m is

also 1. Such 2D dynamic sparsity of hidden support vectors can be naturally modeled as the

following 2D-MM [67]:

p
(
s(T )

)
= p (s1,1)︸ ︷︷ ︸

h1,1(s1,1)

M∏
m=2

p (s1,m|s1,m−1)︸ ︷︷ ︸
h1,m(s1,m,s1,m−1)

×
T∏
t=2

p (st,1|st−1,1)︸ ︷︷ ︸
ht,1(st,1,st−1,1)

M∏
m=2

p (st,m|st,m−1, st−1,m)︸ ︷︷ ︸
ht,m(st,m,st,m−1,st−1,m)

 , (3.3.5)

whose 2D transition probabilities are defined as ρS01 = p (s1,m = 1|s1,m−1 = 0) , ρS10 =

p (s1,m = 0|s1,m−1 = 1), ρT01 = p (st,1 = 1|st−1,1 = 0), ρT10 = p (st,1 = 0|st−1,1 = 1) and

ρbca = p (st,m = a|st,m−1 = b, st−1,m = c) , where a, b, c ∈ {0, 1}, t > 1 and m > 1. The

factor graph of the 2D-MM of the hidden support vector is illustrated in Fig. 3.3-a, where

the factor nodes ht,m are the conditional priors (priors) in (3.3.5). Note that we can always

find a set of transition probabilities {ρSba, ρTca, ρbca} to make the 2D-MM operate in a steady-

state [68], such that p(st,m = 1) = λ,∀t,m, where λ > 0 is the sparsity ratio.

Depending on how {ρbca}, a, b, c ∈ {0, 1} are choosing, the prior distribution in (3.3.5)

can favor nearly static support or substantially changing support in the temporal domain. For

example, higher ρb11 and smaller ρb01, b ∈ {0, 1} lead to temporally highly correlated priors

of s(T ). Meanwhile, the prior distribution in (3.3.5) can characterize the clustered structure

of st in the spatial domain. For example, a higher ρ1c1, c ∈ {0, 1} leads to a larger average

cluster size, and a smaller ρ0c1, c ∈ {0, 1} leads to a larger average gap between clusters in

st. As such, the 2D-MM in (3.3.5) is a general flexible model to characterize the 2D dynamic

sparsity of s(T ).
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Figure 3.3: Factor graphs of hidden support and value vectors when M = 3 and T = 3. (a)
Left: Factor graph of the 2D-MM of the hidden support vectors; (b) Right: Factor graph of
Gauss-Markov model of the hidden value vectors.

3.3.3 Gauss-Markov Model of Hidden Value Vector

It has been shown in [34] and [35] that the path gains evolve smoothly over time. We can

use the spatially independent steady-state Gauss-Markov processes to model the temporal

evolution of the hidden value vector as follows [66]:

θt,m = (1− α) (θt−1,m − ζ) + αwt,m + ζ, (3.3.6)

where α ∈ [0, 1] controls the temporal correlation, ζ ∈ C is the mean of the process, and

wt,m ∼ CN (0, κ) is the i.i.d Gaussian perturbation with mean 0 and variance κ. Specifically,

if α = 0, then θt,m = θt−1,m, which means the hidden value vector θt is unchanged over time.

If α = 1, then θt,m = wt,m + ζ ∼ CN (ζ, κ), which means the hidden value vector θt is i.i.d

Gaussian distributed over time. If 0 < α < 1, based on (3.3.6), the conditional probability of

θt,m could be given by

p (θt,m|θt−1,m) ∼ CN
(
θt,m; (1− α) θt−1,m + αζ, α2κ

)
. (3.3.7)

In the steady-state

θt,m ∼ CN
(
ζ, σ2

)
,∀t,m, (3.3.8)
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Figure 3.4: Factor graph of the 2D-MM channel when M = 3 and T = 3. The detailed factor
graphs for hidden support vector st and hidden value vector θt are illustrated in Fig. 3.3.

where the steady-state variance is σ2 = ακ
2−α . The joint distribution of θ(T ) can be calculated

as follows:

p
(
θ(T )

)
=

M∏
m=1

p (θ1,m)︸ ︷︷ ︸
d1,m(θ1,m)

T∏
t=2

p (θt,m|θt−1,m)︸ ︷︷ ︸
dt,m(θt,m,θt−1,m)

. (3.3.9)

The factor graph of the Markov model of the hidden value vector is illustrated in Fig. 3.3-b,

where the factor nodes dt,m are the conditional priors in (3.3.7) for t > 1 and priors in (3.3.8)

for t = 1.

Finally, the overall factor graph of the 2D-MM channel is illustrated in Fig. 3.4, where

the factor node ft,m is the conditional prior in (3.3.4).

3.3.4 Verification of Two-Dimensional Markov Channel Model

Compared to other static channel models [7, 9, 10], the proposed 2D-MM provides more

flexibility to model more realistic channels. Specifically, in our model, the average clus-

ter size and cluster number in the spatial domain, the average support changing frequency

and the dependency of the channel gains across time are determined by a set of parameters

ρ , {ρSba, ρTca, ρbca, α, ζ, κ, σ2}, where a, b, c ∈ {0, 1}. For given parameters, the channel

realizations could have different spatial-temporal properties, i.e., different cluster numbers

and cluster sizes, and different channel evolution across time. As such, the proposed 2D-MM

channel can be used to model various channel realizations in practice, and thus works well

for realistic channels. Moreover, the statistic parameters in our model ρ could be automati-

cally learned by the proposed D-TOAMP algorithm based on the EM framework during the

recovery process.
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Figure 3.5: Comparison of the measured channel property extracted from the 28-GHz mm-
SSCM [1] and the simulated channel property extracted from the 2D-MM channel. We set
M = 256 and T = 50. The results are calculated through 200 channel series realizations. (a)
Number of AoD SLs; (b) AoD global AS.

In this section, we will also provide some verifications of the proposed 2D-MM channel.

Fig. 3.5a shows a typical empirical histogram plot of the number of AoD spatial lobes (SLs)

extracted from the 28-GHz millimeter-wave statistical spatial channel model (mm-SSCM)

proposed in [1], next to the simulated histograms extracted from the proposed 2D-MM chan-

nel. It can be seen that the proposed 2D-MM channel prior yields good agreement with the

practical mmWave channels.

AoD global AS describes the degree of angular dispersion at the BS over the entire 2π

azimuth plane. The AoD global AS in Fig. 3.5b are computed based on a −10 dB lobe

threshold from the measured data in the 28-GHz mm-SSCM [1], and are compared to the

simulated values using the 2D-MM channel prior. It can be seen that the statistics of the

simulated and measured global AS match well.

3.4 Massive MIMO Channel Tracking with 2D Dynamic

Sparsity

Using the angular domain channel representation, (3.2.1) can be rewritten as a standard CS

model as in [7, 36]

yt = Ft (βt) xt + nt,∀t, (3.4.1)
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where the measurement matrix Ft (βt)3 is given by

Ft (βt) = UH
t A (βt) ∈ CP×M . (3.4.2)

It is well known that the choice of measurement matrix will affect the CE performance sig-

nificantly. It is shown in [22, 23, 25] that a partial orthogonal measurement matrix achieves

better performance than an i.i.d. Gaussian matrix under the OAMP algorithm. In order

to reduce the signaling overhead between the BS and user, the pilot matrix is designed

by assuming a fixed off-grid parameter βt = 0. Then the pilot matrix Ut is designed as

UH
t = StDRtA (0)−1, such that Ft (0) = StDRt, which is referred to as a partial DFT-

random permutation (RP) measurement matrix. St ∈ {0, 1}P×M is a selection matrix con-

sisting of randomly selected and reordered P rows of anM×M identity matrix, D ∈ CM×M

is the DFT matrix, and Rt ∈ {0, 1}M×M is a RP matrix generated by a randomly reordered

M ×M identity matrix. For large antenna arrays, M is large and the measurement matrix

Ft (βt) = StDRtA (0)−1 A (βt) ≈ StDRt is approximately partial orthogonal. Simula-

tions in Section 3.6 verify that such choice of pilot matrix can indeed achieve a good perfor-

mance4.

Remark 3.1. In the original OAMP algorithm, the measurement matrix is chosen as partial

DFT matrix and the sparse signal follows i.i.d distribution. However, as shown in Fig. 3.6, we

find that partial DFT matrix does not work well for signals with complicated correlations, i.e.,

2D-MM priors. On the other hand, the partial DFT-RP matrix decorrelates the sparse signal

by introducing a RP. Therefore, partial DFT-RP achieves better performance compared to the

partial DFT measurement matrix for the D-TOAMP algorithm with non-i.i.d structure of the

sparse signals.

Based on the observation model in (3.4.1) and the 2D-MM for the massive MIMO chan-

nels x(t) in (3.3.3), our primary goal is to recursively track the time-varying channel vector xt
and optimize the off-grid parameter βt at the t-th time slot, given the observations up to t time

slots y(t) = {yτ}tτ=1 and the (approximate) optimal off-grid parameters up to (t−1) time slot

β∗(t−1) = {β∗τ}t−1
τ=1 in (3.4.1). Because β∗(t−1) is fixed for the channel tracking problem at

the t-th time slot, we omit β∗(t−1) in the probability expressions for simplicity. In particular,

3We use Ft as the notation for measurement matrix in this chapter.
4Note that the pilot sequence in (3.4.2) can be static or time varying. In both cases, they achieve similar

performances.
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for given βt, we are interested in computing the marginal posterior p
(
xt,m|y(t),βt

)
, where

p
(
xt,m|y(t),βt

)
∝
∑
s(t)

∫
x(t)
−(t,m),θ

(t)
p
(
x(t), s(t),θ(t),y(t)|βt

)

=
∑
s(t)

∫
x(t)
−(t,m),θ

(t)
p
(
s(t)
)
p
(
θ(t)

)∏
τ,m

p (xτ,m|sτ,m, θτ,m)
P∏
i=1

t−1∏
τ=1

p (yτ,i|xτ ) p (yt,i|xt,βt) .

(3.4.3)

x(t)
−(t,m) denotes the vector collections {xτ}tτ=1 excluding the element xt,m, p (yt,i|xt,βt) =

CN (yt,i; ft,ixt, σ2
e), and yt,i is the i-th element of yt, ft,i is the i-th row of Ft (βt). We use

∝ to denote equality after scaling. On the other hand, the optimal off-grid parameter βt is

obtained by maximum likelihood (ML) as follows:

β?t = arg max
βt

ln p
(
y(t),βt

)
= arg max

βt
ln
∫

x(t)
p
(
x(t),y(t),βt

)
dx(t). (3.4.4)

Once we obtain the ML estimate of β?t , and the associated conditional marginal posterior
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p
(
xt,m|y(t),β?t

)
, we can obtain the MMSE estimates of {xt,m}, x̂t,m = E

(
xt,m|y(t),β?t

)
,

where the expectation is over the marginal posterior p
(
xt,m|y(t),β?t

)
.

It is very challenging to calculate the exact posterior in (3.4.3) because the factor graph

of the underlying model in (3.4.3) has loops. In the next section, we propose a D-TOAMP

algorithm to approximately calculate the marginal posteriors
{
p
(
xt,m|y(t),βt

)}
and the asso-

ciated MMSE estimates, and use an inexact majorization-minimization (MM) method (which

is a generalization of the EM method) [27] to find an approximate solution of (3.4.4). One

major approximation in the proposed algorithm is that the approximate message passing al-

gorithm (D-TOAMP) may not find the exact posterior in (3.4.3) due to the presence of loops

in the associated factor graph. If we assume for fixed βt, D-TOAMP can find the exact pos-

terior in (3.4.3), then we an show that the proposed algorithm will converge to a stationary

point of the ML problem in (3.4.4) for βt. However, the state evolution analysis in [21–23]

implies that the approximate posterior of xt obtained by the OAMP-based algorithms can be

quire accurate. As such, the proposed algorithm is expected to achieve a good performance.

Indeed, the proposed D-TOAMP algorithm is shown in the simulations to have significant

gain over various state-of-the-art baselines.

Challenge 2: There is no closed-form posterior distribution in (3.4.3) and it is difficult to

obtain the closed-form expression of β?t in (3.4.4).

3.5 Dynamic Turbo-OAMP Algorithm

The basic idea of the D-TOAMP algorithm is to simultaneously approximate the marginal

posterior p
(
xt,m|y(t),βt

)
exploiting the 2D-MM prior and maximize the log-likelihood ln p

(
y(t),βt

)
with respect to βt as in (3.4.4) at the t-th time slot. In summary, at the t-th time slot, the

D-TOAMP algorithm (Algorithm 3.1) performs iterations between the following two major

steps until convergence.

• D-TOAMP-E Step: Givenβt, calculate the approximate marginal posterior p̂
(
xt,m|y(t),βt

)
by combining the OAMP and 2D-MM prior via the turbo framework, as elaborated in

Section 3.5.2. Then p
(
xt|y(t),βt

)
can be approximated by p̂

(
xt|y(t),βt

)
= ∏

m p̂
(
xt,m|y(t),βt

)
.

• D-TOAMP-M Step: Given p(xt|y(t),βt) ≈ p̂(xt|y(t),βt), construct a surrogate func-

tion (lower bound) for the objective function ln p
(
y(t),βt

)
, then maximize the surro-

gate function with respect to βt, as elaborated in Section 3.5.1.
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In the following, we first elaborate the D-TOAMP-M step, which is an extension of the

inexact MM method in [27]. Because the surrogate function in D-TOAMP-M step requires

the calculation of the posterior p
(
xt|y(t),βt

)
, we elaborate how to approximately calculate

the posterior p
(
xt|y(t),βt

)
in the D-TOAMP-E step.

3.5.1 D-TOAMP-M Step (Inexact MM)

It is difficult to directly maximize the log-likelihood function ln p
(
y(t),βt

)
, because there is

no closed-form expression due to the multi-dimensional integration over x(t) as in (3.4.4). To

make the problem tractable, in the D-TOAMP-M Step, we adopt an inexact MM method in

[27], which maximizes a surrogate function of ln p
(
y(t),βt

)
with respect to βt. Specifically,

let u(βt; β̇t) be the surrogate function constructed at some fixed point β̇t,which satisfies the

following properties:

u(βt; β̇t) ≤ ln p
(
y(t),βt

)
,∀βt, (3.5.1)

u(β̇t; β̇t) = ln p
(
y(t), β̇t

)
, (3.5.2)

∂u(βt; β̇t)
∂βt

∣∣∣∣∣
βt=β̇t

=
∂ ln p

(
y(t),βt

)
∂βt

∣∣∣∣∣∣
βt=β̇t

. (3.5.3)

Inspired by the EM algorithm [30], we use the following surrogate function:

u(βt; β̇t) =
∫
p
(
xt|y(t), β̇t

)
ln
p
(
xt,y(t),βt

)
p
(
xt|y(t), β̇t

) dxt. (3.5.4)

It can be shown that the surrogate function in (3.5.4) satisfies (3.5.1)-(3.5.3). Then in the

D-TOAMP-M step of the i-th iteration, we update βt as

βi+1
t = arg max

βt
u(βt;βit), (3.5.5)

where βit stands for the value of βt at the i-th iteration. However, the maximization problem

in (3.5.5) is non-convex and it is difficult to find its optimal solution. Therefore, we use an

inexact MM algorithm, where βi+1
t is obtained by applying gradient update as follows:

βi+1
t = βit + ∆i · ∂u(βt;βit)

∂βt

∣∣∣∣∣
βt=βit

, (3.5.6)
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Algorithm 3.1 Dynamic Turbo-OAMP Algorithm

Input: {y1, · · · ,yT}, measurement matrix Ft (0), ∀t, and noise variance σ2
e .

Output: {x̂1, · · · , x̂T}.
for t = 1, · · · , T do

Initialize: xpriA,t = 0, vpriA,t = λσ2, β1
t = 0, ∀t, i = 1.

while not converge do
%D-TOAMP-E Step (for given βt = βit):
%Module A: LMMSE estimator
1: Update xpostA,t and vpostA,t using (3.5.19) and (3.5.20).
2: Update xpriB,t = xextA,t and vpriB,t = vextA,t using (3.5.22) and (3.5.23).
%Module B: 2D-MM-MMSE estimator (Message Passing over Gt)
3: Message passing over the path θt,m → ft,m using (3.5.25), with νdt,m→θt,m as the
input.
4: Message passing over the path xt,m → ft,m → st,m using (3.5.27) and (3.5.28),
with xpriB,t and vpriB,t as the input.
5: Hidden support vector estimation in Gs,t through Algorithm 3.2 in Section 3.5.2.3,
with νst−1,m→ht,m as the input.
6: Message passing over the path st,m → ft,m → xt,m using (3.5.30) and (3.5.31).
7: Calculate the posterior distributions p(xt,m|xpri(t)B ) using (3.5.32), and update xpostB,t

and vpostB,t using (3.5.33) and (3.5.34).
8: Update xpriA,t = xextB,t and vpriA,t = vextB,t using (3.5.35) and (3.5.36).
9: Repeat Module A and Module B until convergence.
10: Then p̂(xt,m|y(t),βit) = CN (xpostB,t,m, v

post
B,t ). Output p̂

(
xt|y(t),βit

)
=

CN (xpostB,t , v
post
B,t I).

%D-TOAMP-M Step:
11: Construct the surrogate function û(βt;βit) in (3.5.7) using the approximate poste-
rior output of D-TOAMP-E step, i.e., p̂

(
xt|y(t),βit

)
. Then update the off-grid param-

eter βi+1
t as in (3.5.6).

12: i = i+ 1.
end while
13: Output x̂t = xpostB,t .
14: Update messages passed to the (t+ 1)-th time slot νst,m→ht+1,m(st,m) and
νdt+1,m→θt+1,m (θt+1,m) using (3.5.37) and (3.5.41).

end for
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where ∆i is the stepsize, which can be determined by backtracking line search [69]. Al-

ternatively, we may use a fixed stepsize as mentioned in [27] to reduce the computational

complexity due to backtracking line search.

Based on the convergence proof of the EM algorithm in [70], we can prove that the inexact

MM converges to a stationary solution of the optimization problem (3.4.4).

Lemma 3.1 (Convergence of Inexact MM). Suppose the surrogate function u(βt;βit) satisfies

(3.5.1)-(3.5.3). If at each iteration, we do inexact (gradient) update as in (3.5.6) for off-grid

parameter βt, the iterates generated by the D-TOAMP algorithm converge to a stationary

point of Problem (3.4.4).

Therefore, if we can calculate the exact posterior p
(
xt|y(t), β̇t

)
for given β̇t, we can

construct the surrogate function in (3.5.4) and the corresponding D-TOAMP algorithm con-

verges to a stationary point of (3.4.4). Unfortunately, in our case, the exact posterior is

intractable due to the loops in the factor graph. Thus, in the D-TOAMP-E step, we incor-

porate the 2D-MM channel prior into the OAMP algorithm to find an approximation of the

marginal posterior p
(
xt,m|y(t), β̇t

)
, i.e., p̂

(
xt,m|y(t), β̇t

)
for any given β̇t. Then the posterior

p
(
xt|y(t), β̇t

)
can be approximated by p̂

(
xt|y(t), β̇t

)
= ∏

m p̂
(
xt,m|y(t), β̇t

)
. Based on the

posterior approximation p̂
(
xt|y(t), β̇t

)
, we can construct a tractable surrogate function as

û(βt; β̇t) =
∫
p̂
(
xt|y(t), β̇t

)
ln
p
(
xt,y(t),βt

)
p̂
(
xt|y(t), β̇t

) dxt, (3.5.7)

which is expected to approximately satisfy (3.5.1)-(3.5.3). Therefore, after the convergence

of the D-TOAMP with the tractable surrogate function in (3.5.7), we not only obtain an

approximate stationary solution β∗t of (3.4.4), but also the associated (approximate) marginal

conditional posterior p
(
xt,m|y(t),β∗t

)
≈ p̂

(
xt,m|y(t),β∗t

)
.

The detailed update expression for βt could be found in Appendix 3.9.1.

3.5.2 D-TOAMP-E Step

We first give an overview of the OAMP technique that will be used in the algorithm design

in this subsection. Then, we elaborate the modules of the D-TOAMP-E step and the message

passing in Module B at each time slot in the D-TOAMP-E step.
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3.5.2.1 Overview of Orthogonal Approximate Message Passing

OAMP proposed in [21–23] is a variation of the well-known approximate message passing

(AMP) [19]. OAMP can handle a wide range of partial orthogonal sensing matrices, and it is

shown to achieve a better performance than AMP. Consider the linear observation model

y = Fx + n, (3.5.8)

where x ∈ CQ×1 is a sparse signal to be estimated, y ∈ CL×1 is the received signal, and

n ∼ CN (0, σ2
eI) is the Gaussian noise, F ∈ CL×Q is a partial orthogonal matrix. The entries

of the sparse signal x are assumed to be i.i.d., with the j-th entry following the Bernoulli-

Gaussian distribution:

xj ∼


0 probability = 1− λ,

CN (0, ξ) probability = λ.

(3.5.9)

OAMP is designed to recover the i.i.d. sparse signal x from the linear observation model in

(3.5.8).

OAMP contains two modules: Module A is a linear MMSE (LMMSE) estimator based

on the observation and the messages from Module B; Module B performs MMSE estimator

that combines the i.i.d sparse prior in (3.5.9) and the messages from Module A. The extrinsic

output [71] of a module is fed to the other module as a prior input. The two modules are

executed iteratively until convergence. At the end, the estimation of x is given based on the

posterior output of Module B.

Specifically, for Module A, it is based on the assumption that the entries of x are i.i.d

with a prior mean xpriA and variance vpriA , where xpriA and vpriA are the messages passed from

Module B. Then under this assumption, the LMMSE estimate and the MSE of x based on

model (3.5.8) are respectively given by [23]

xpostA = xpriA + vpriA

vpriA + σ2
e

FH(y− FxpriA ), (3.5.10)

vpostA = vpriA −
L

Q
· (vpriA )2

vpriA + σ2
e

. (3.5.11)
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The extrinsic LMMSE estimate and the MSE of x can be computed by [23]

xpriB = xextA = vextA

(
xpostA

vpostA

− xpriA

vpriA

)
, (3.5.12)

vpriB = vextA =
(

1
vpostA

− 1
vpriA

)−1

, (3.5.13)

which is passed to Module B as its input messages.

For Module B, it is based on the assumption that xpriB is modeled as an AWGN observation

of x, i.e.,

xpriB = x + z, (3.5.14)

where z ∼ CN
(
0, vpriB I

)
is independent of x. Based on this assumption, the posterior mean

and variance can be respectively calculated as [23]

xpostB,j = E
(
xj|xpriB

)
= E

(
xj|xpriB,j

)
, (3.5.15)

vpostB = 1
Q

Q∑
j=1

Var
(
xj|xpriB,j

)
= 1
Q

Q∑
j=1

E
(∣∣∣xj − E

(
xj|xpriB,j

)∣∣∣2) , (3.5.16)

where xpostB,j and xpriB,j denote the j-th entry of xpostB and xpriB . E (·) is with respect to the

posterior distribution of x, which is given by p
(
xj
∣∣∣xpriB,j

)
∝ p

(
xpriB,j |xj

)
p (xj) , where p (xj)

is given in (3.5.9). Based on (3.5.14), p
(
xpriB,j |xj

)
is given by CN

(
xpriB,j;xj, v

pri
B

)
. Note that

as the entries of x are prior independent (from (3.5.9)) and according to the assumption in

(3.5.14), the entries of x are also posterior independent. The extrinsic mean and variance of

x can be computed by [23]

xpriA = xextB = vextB

(
xpostB

vpostB

− xpriB

vpriB

)
, (3.5.17)

vpriA = vextB =
(

1
vpostB

− 1
vpriB

)−1

. (3.5.18)

3.5.2.2 Modules of the D-TOAMP-E Step within a Time Slot

At each time slot t, for given βt, the D-TOAMP-E step contains two modules (as shown in

Fig. 3.7): Module A is a LMMSE estimator based on the current observation yt and messages

from Module B. Module B performs MMSE estimation that combines the 2D-MM channel

prior in (3.3.3), the messages from Module A and the messages passed from the last time

slot (for t > 1). The two modules are executed iteratively until convergence. Because in the

60



LMMSE 
estimator

2D‐MM‐
MMSE 

estimator
ext

ext

Module B Module A

Message passed to 
(t+1)‐th time slot

Message passed from 
(t‐1)‐th time slot

Measurement 
at t‐th time slot

Channel estimate 
at t‐th time slot

, ,

, ,

, ,

, ,

, , ,

, , ,

, ,

, ,

Figure 3.7: Modules of the D-TOAMP algorithm

D-TOAMP-E step, βt is fixed, we will omit the argument βt in the probability expressions

for simplicity.

We now provide more details of each module. In Module A, the channel vector xt is

estimated based on the observation yt with a prior distribution CN (xt; xpriA,t, v
pri
A,tI), where

xpriA,t and vpriA,t are the extrinsic mean and variance, respectively, from the 2D-MM-MMSE

estimator that will be elaborated in detail later. Then the posterior distribution of xt is still

complex Gaussian with mean and variance given by

xpostA,t = xpriA,t +
vpriA,t

vpriA,t + σ2
e

Ft (βt)H (yt − Ft (βt) xpriA,t) (3.5.19)

and

vpostA,t = vpriA,t −
P

M
·

(vpriA,t)2

vpriA,t + σ2
e

, (3.5.20)

respectively. After that, we need to calculate the extrinsic message passing [71], which can

decorrelate the input and output messages of the estimator. The extrinsic distribution of xt
satisfies

CN (xt; xpostA,t , v
post
A,t I) ∝CN (xt; xpriA,t, v

pri
A,tI)CN (xt; xextA,t, v

ext
A,tI). (3.5.21)

Therefore, the extrinsic mean and variance are respectively given by

xpriB,t = xextA,t = vextA,t(
xpostA,t

vpostA,t

−
xpriA,t

vpriA,t

), (3.5.22)
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vpriB,t = vextA,t = ( 1
vpostA,t

− 1
vpriA,t

)−1. (3.5.23)

In Module B, the extrinsic calculation is similar to that in Module A, but the 2D-MM-

MMSE estimator is more complicated.

Challenge 3: MMSE estimator design for the 2D-MM priors.

In OAMP [23], the MMSE estimator was designed for i.i.d. prior. However, in this

chapter, the massive MIMO channels with 2D dynamic sparsity are not i.i.d distributed. The

MMSE estimator needs to be redesigned based on the proposed 2D-MM channel prior. There-

fore, the standard MMSE estimator for i.i.d. prior cannot be applied and we need to extend

the MMSE estimator in order to exploit the 2D dynamic sparsity structure in the massive

MIMO channels in (3.3.3). The details of the 2D-MM-MMSE estimator and the correspond-

ing extrinsic update are presented in Section 3.5.2.3.

3.5.2.3 Message Passing in Module B (2D-MM-MMSE estimator)

In this subsection, we explain the details of Module B for 2D-MM channel priors at time slot

t, 1 ≤ t ≤ T . A basic assumption is to model xpriB,t, the extrinsic mean from the LMMSE

estimator as given in (3.5.22), as an AWGN observation [23], i.e.,

xpriB,t = xt + zt, (3.5.24)

where zt ∼ CN (0, vpriB,tI) is independent of xt, and vpriB,t is the extrinsic variance from the

LMMSE estimator as given in (3.5.23). Similar assumptions have been widely used in

message-passing-based iterative signal recovery algorithms [19, 22, 23, 25]. A formal proof

of Assumption (3.5.24) has been provided in [41] for the AMP with an i.i.d. Gaussian mea-

surement matrix. Extensive simulations have also been conducted in [22,23,25] to verify the

validity of Assumption (3.5.24) for the OAMP. The main advantage of replacing the origi-

nal observation model in (3.4.1) with the approximate AWGN observation model in (3.5.24)

is that the per iteration complexity of the message passing algorithm can be reduced from

O (PM) to only O (M).

Denote the collection of measurement vectors in AWGN observation model as xpri(T )
B ={

xpriB,t

}T
t=1

. Under Assumption (3.5.24), the factor graph of joint distribution p(xpri(T )
B ,x(T ), s(T ),θ(T )),

denoted by G, is shown in Fig. 3.8, where the function expression of each factor node is
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Figure 3.8: Factor graph of the D-TOAMP

Table 3.1: Factors, distributions and functional forms in our signal model
Factor Distribution Functional form

gt,m
(
xt,m, x

pri
B,t,m

)
p
(
xpriB,t,m|xt,m

)
CN

(
xt,m;xpriB,t,m, v

pri
B,t

)
ft,m (xt,m, st,m, θt,m) p (xt,m|st,m, θt,m) δ (xt,m − θt,mst,m)

h1,1 (s1,1) p (s1,1) (1− λ)1−s1,1 (λ)s1,1

h1,m (s1,m, s1,m−1) p (s1,m|s1,m−1)


(
ρS01

)s1,m (1− ρS01

)1−s1,m
, s1,m−1 = 0(

1− ρS10

)s1,m (
ρS10

)1−s1,m
s1,m−1 = 1

ht,1 (st,1, st−1,1) p (st,1|st−1,1)


(
ρT01

)st,1 (1− ρT01

)1−st,1
, st−1,1 = 0(

1− ρT10

)st,1 (
ρT10

)1−st,1
st−1,1 = 1

ht,m (st,m, st,m−1, st−1,m) p (st,m|st,m−1, st−1,m) (ρbc1)st,m (1− ρbc1)1−st,m ,st,m−1 =
b, st−1,m = c, b, c ∈ {0, 1}

d1,m (θ1,m) p (θ1,m) CN (θ1,m; ζ, σ2)
dt,m (θt,m, θt−1,m) p (θt,m|θt−1,m) CN (θt,m; (1− α) θt−1,m + αζ, α2κ)
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Figure 3.9: Message passing of Step 3-6 in Algorithm 3.1

listed in Table 3.1. At time slot t, the factor graph denoted by Gt can be decomposed into

three parts: the channel coefficient subgraph Gc,t (which represents the AWGN measurement

model (3.5.24)); the hidden support subgraph Gs,t (which represents the 2D-MM st); and

the hidden value subgraph Gθ,t (which represents the Gauss-Markov θt). Module B aims at

calculating the posterior distributions
{
p
(
xt,m|xpri(t)B

)}
using the SPMP rule.

The message passing order at time slot t is elaborated in Fig. 3.9. This figure also intro-

duces the notations that we adopt to parameterize the different messages. For hidden support

variables st,m with a binary distribution, the associated message is represented by its nonzero

probability, e.g., πint,m = νft,m→st,m (st,m = 1). For hidden value variable θt,m with a complex

Gaussian distribution, the associated message is parameterized using its mean and variance,

i.e., νθt,m→ft,m (θt,m) = CN
(
θt,m;µoutt,m, ψ

out
t,m

)
. Note that at the first time slot, the variable

nodes st−1,m, θt−1,m and associated edges will be removed. At time slot T , the factor nodes

ht+1,m, dt+1,m and associated edges will be removed. The details are elaborated as follows.

Step 3 in Algorithm 3.1: Based on the prior information passed from the last time slot

νdt,m→θt,m = CN
(
θt,m;µact,m, ψact,m

)
, the message passed from variable node θt,m to factor

node ft,m can be calculated as

νθt,m→ft,m (θt,m) = CN
(
θt,m;µoutt,m, ψ

out
t,m

)
, (3.5.25)

where (
µoutt,m, ψ

out
t,m

)
=
(
µact,m, ψ

ac
t,m

)
. (3.5.26)

Note that since the proposed algorithm is a recursive algorithm, there are no messages passed

from dt+1,m due to causality. If t = 1, we set
(
µac1,m, ψ

ac
1,m

)
= (ζ, σ2) .
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Step 4 in Algorithm 3.1: According to the sum-product rule, the message from variable

node xt,m to factor node ft,m is

νxt,m→ft,m (xt,m) = CN
(
xt,m;xpriB,t,m, v

pri
B,t

)
. (3.5.27)

The message from factor node ft,m to variable node st,m is

νft,m→st,m (st,m)

=
∫
x

∫
θ
νθt,m→ft,m (θ) νxt,m→ft,m (x) δ (x− θst,m) dθdx

=πint,mδ (st,m − 1) +
(
1− πint,m

)
δ (st,m) , (3.5.28)

where

πint,m =
1 +

CN
(
0;xpriB,t,m, v

pri
B,t

)
CN

(
0;xpriB,t,m − µoutt,m, v

pri
B,t + ψoutt,m

)
−1

. (3.5.29)

Step 5 in Algorithm 3.1: A forward-backward message passing is performed over the

2D-MM of st given input messages
{
νft,m→st,m(st,m)

}
,
{
νst−1,m→ht,m(st−1,m)

}
. Details are

summarized in Algorithm 3.2. Note that there is no message passed from ht+1,m due to

causality.

Step 6 in Algorithm 3.1: After this, the message from variable node st,m to factor node

ft,m can be calculated as

νst,m→ft,m (st,m) = πoutt,mδ (st,m − 1) +
(
1− πoutt,m

)
δ (st,m) , (3.5.30)

where πoutt,m is given by the output of Algorithm 3.2. The message from factor node ft,m back

to variable node xt,m is

νft,m→xt,m (xt,m) =πoutt,mCN
(
xt,m;µoutt,m, ψ

out
t,m

)
+
(
1− πoutt,m

)
δ (xt,m) . (3.5.31)

After calculating the updated messages
{
νft,m→xt,m

}
, the posterior distributions are given

by

p
(
xt,m|xpri(t)B

)
∝νft,m→xt,m (xt,m) νgt,m→xt,m (xt,m) , (3.5.32)
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Algorithm 3.2 Channel Support Estimation Procedure

1: Input: πact,m, πint,m, ∀m
2: Output: πoutt,m, ∀m
3: If t = 1
4: Initialize: γft,1 = λ, γbt,M = 1

2
5: for m = 2, · · · ,M
6: γft,m = ρS01(1−πint,m−1)(1−γft,m−1)+ρS11π

in
t,m−1γ

f
t,m−1

(1−πint,m−1)(1−γft,m−1)+πint,m−1γ
f
t,m−1

.

7: for m = 1, · · · ,M − 1
8: γbt,m = ρS10(1−πint,m+1)(1−γbt,m+1)+(1−ρS10)πint,m+1γ

b
t,m+1

(ρS00+ρS10)(1−πint,m+1)(1−γbt,m+1)+(ρS11+ρS01)πint,m+1γ
b
t,m+1

.

9: Else If t > 1
10: Initialize: γft,1 = ρT01

(
1− πact,1

)
+
(
1− ρT10

)
πact,1 , γbt,M = 1

2 .
11: for m = 2, · · · ,M
12: γft,m = ρ111πact,m+ρ101(1−πact,m)

1+
(
(πint,m−1)

−1−1
)((

γft,m−1
)−1
−1
) + ρ011πact,m+ρ001(1−πact,m)(

(πint,m−1)
−1−1

)−1((
γft,m−1

)−1
−1
)−1

+1
.

13: for m = 1, · · · ,M − 1
14: γbt,m = 1

1+γ , where γ = (1−πint,m+1−γ
b
t,m+1)[ρ010πact,m+1+ρ000(1−πact,m+1)]+πint,m+1γ

b
t,m+1

(1−πint,m+1−γ
b
t,m+1)[ρ110πact,m+1+ρ100(1−πact,m+1)]+πint,m+1γ

b
t,m+1

.

15: end
16: Then πoutt,m = γft,mγ

b
t,m

γft,mγ
b
t,m+

(
1−γft,m

)
(1−γbt,m) .

where νgt,m→xt,m (xt,m) = CN (xt,m;xpriB,t,m, v
pri
B,t). Then the posterior mean and variance can

be respectively calculated as

xpostB,t,m =E
(
xt,m|xpri(t)B

)
=
∫
xt,m

xt,mp
(
xt,m|xpri(t)B

)
(3.5.33)

and

vpostB,t = 1
M

M∑
m=1

Var
(
xt,m|xpri(t)B

)
= 1
M

M∑
m=1

∫
xt,m

∣∣∣xt,m − E
(
xt,m|xpri(t)B

)∣∣∣2 p(xt,m|xpri(t)B ).

(3.5.34)

Based on the derivation in [23], the corresponding extrinsic update can be calculated as

xpriA,t = xextB,t = vpriA,t

xpostB,t

vpostB,t

−
xpriB,t

vpriB,t

 , (3.5.35)

vpriA,t = vextB,t =
 1
vpostB,t

− 1
vpriB,t

−1

. (3.5.36)
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Figure 3.10: Message passing across time slots

3.5.3 Message Passing Across Time Slots

After the convergence of the message passing over Gt, we forward the latest messages about

st and θt to the next time slot to provide prior information about st+1 and θt+1. The mes-

sage passing procedure is shown in Fig. 3.10. We firstly calculate channel support prior

information passed to the next time slot νst,m→ht+1,m(st,m) as follows:

νst,m→ht+1,m(st,m)

=νht,m→st,m(st,m)νht,m+1→st,m(st,m)νft,m→st,m(st,m)

=πact+1,mδ(st,m − 1) + (1− πact+1,m)δ(st,m), (3.5.37)

where πact+1,m is given by

πact+1,m =
γft,mγ

b
t,mπ

in
t,m

γft,mγ
b
t,mπ

in
t,m +

(
1− γft,m

) (
1− γbt,m

) (
1− πint,m

) .

In order to calculate the hidden value vector prior information passed to next time slot, we

firstly calculate the message from factor node ft,m to variable node θt,m based on the latest

information as follows:

νexact
ft,m→θt,m (θt,m)

=
∫
x

∑
s

νst,m→ft,m (s) νxt,m→ft,m (x) δ (x− θt,ms) dx

=πoutt,mCN
(
θt,m;xpriB,t,m, v

pri
B,t

)
+
(
1− πoutt,m

)
CN

(
0;xpriB,t,m, v

pri
B,t

)
. (3.5.38)

This is an inappropriate message, because CN
(
0;xpriB,t,m, v

pri
B,t

)
which is irrelevant to θt,m
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prevents us from normalizing it. Intuitively, νft,m→θt,m (θt,m) conveys the information about

hidden values θt,m based on the channel support st,m and actual channel coefficient xt,m. If

st,m = 0, then by (3.3.2), xt,m = 0. We can not obtain any useful information about θt,m,

which makes θt,m unobservable. The constant term in (3.5.38) reveals the uncertainty caused

by this unobservability through an infinitely broad and uninformative distribution of θt,m. A

similar problem also occurs in [66], we adopt the similar approach to solve it by introducing

a threshold. The resulting proper message is given by

νft,m→θt,m (θt,m) = CN
(
θt,m;µint,m, ψint,m

)
(3.5.39)

where (
µint,m, ψ

in
t,m

)
=


(

1
ε
xpriB,t,m,

1
ε2
vpriB,t

)
πoutt,m ≤ Thr,(

xpriB,t,m, v
pri
B,t

)
πoutt,m > Thr,

(3.5.40)

the threshold Thr is slightly less than 1 and ε is close to 0. Then the prior information about

the hidden value vector passed to the next time slot can be calculated as follows:

νdt+1,m→θt+1,m (θt+1,m) = CN
(
θt+1,m;µact+1,m, ψ

ac
t+1,m

)
, (3.5.41)

where

µact+1,m = (1− α)
(

ψact,mψ
in
t,m

ψact,m + ψint,m

)(
µact,m
ψact,m,n

+
µint,m
ψint,m

)
+ αζ,

ψact+1,m = (1− α)2
(

ψact,mψ
in
t,m

ψact,m + ψint,m

)
+ α2κ.

Finally, the overall D-TOAMP algorithm is summarized in Algorithm 3.1. Note that the

proposed D-TOAMP can also be applied to a general array geometry at the BS, by replacing

the array response matrix A (β) with A (β, ϕ̂), and adding an additional gradient update for

ϕ̂. The details are omitted for conciseness.

3.5.4 Complexity Analysis

The computational complexity of the proposed algorithm is analyzed as follows.

• Complexity of Module A (LMMSE estimator): The computational complexity of LMMSE

is dominated by the matrix multiplication, whose complexity is O (PM).
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• Complexity of Module B (2D-MM-MMSE estimator): This module is used to handle

the 2D-MM prior (capture the 2D dynamic sparsity of a MIMO channel). Since this

module is just a simple sum-product algorithm over a tree graph, and each message

could be parameterized by one or two variables, the complexity is very low, which is

O(M).

• Complexity of parameter update: The complexity of updating the off-grid parameter

βt is O(PM2) per iteration if the fixed stepsize is used.

This suggests the total computational requirement of the proposed method with off-grid

model is O (PM2) per iteration. Empirical evidence shows that the proposed method usu-

ally converges within 30 iterations5. Fig. 3.11 shows the simulation time of various schemes

versus the number of antennas for not exactly sparse signals (the AoDs do not exactly lie

on the grid points). The details of each baseline scheme are introduced in Section 3.6. It

shows that the complexity of the proposed D-TOAMP without grid refinement is comparable

to the message-passing-based algorithms with i.i.d. or structured priors, such as OAMP [23],

DCS-AMP [66] and Structured Turbo-CS [25], and is lower than that of some popular CS al-

gorithms, such as Modified SP [36], SBL [27] which require matrix multiplication and matrix

inversion with high computational complexity, and Burst-LASSO [7] which needs to solve a

large dimensional optimization problem. With off-grid basis, the off-grid parameter updating

will introduce more complexity in order to eliminate the grid mismatch. However, the off-

grid based D-TOAMP could achieve much better performance compared to the D-TOAMP

without considering the grid mismatch, as shown in Section 3.6.

3.6 Simulation Results

In this section, we evaluate the performance of the proposed algorithm under two widely

used channel models which are not exactly sparse. The spatial channel model (SCM) [72] is

developed in 3GPP/3GPP2 for low frequency bands (less than 6 GHz) and has been widely

used to evaluate the performance of LTE systems. We consider urban microcell environment,

5It is difficult to theoretically analyze the convergence rate of the proposed algorithm. Based on the numer-
ical studies, there are several factors that would affect the convergence rate of D-TOAMP. For example, if the
temporal correlation of massive MIMO channels is stronger, the prior information provided to the next time
slot would be more accurate, and the D-TOAMP algorithm executed at the next time slot would converge to the
stationary points much faster. The initial values of the statistical parameters ρ would also affect the convergence
rate. The more accurate the initial values of ρ are, the faster the algorithm would converge to the optimal values.
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Figure 3.11: Computation time of various schemes versus the number of antennas for not
exactly sparse signals. Set P/M = 0.18, T = 50, SNR= 15dB, λ = 0.125, ρS01 = 0.025,
ρS10 = 0.175, ρT01 = 0.025, ρT10 = 0.025, ρ111 = 0.9946, ρ001 = 0.0007, ρ011 = 0.5, ρ101 =
0.1078, κ = 1, σ = 0.23,α = 0.1, ζ = 0. For Burst-LASSO and SBL baseline, we only
simulate the case when M = 64, 128, 256, 512 due to their long computation time.

and each channel realization consists of Nc = 3 random scattering clusters ranging from

−40◦ to 40◦, and each cluster contains Nb = 10 sub-paths concentrated in a 15◦ angular

spread. The detailed realization could be found in [72]. Another realistic channel model

is mm-SSCM proposed in [1] for high frequency bands (28-73 GHz). The mm-SSCM was

developed based on 28- and 73-GHz ultrawideband propagation measurements in New York

City, and has been shown to faithfully reproduce realistic impulse responses of measured

urban channels. We consider 28 GHz outdoor environment. The number of AoD spatial

lobes, the number of sub-paths, the central AoD angle of each AoD spatial lobe and the

angular spread are generated according to the distribution in [1]. We consider the following

baseline algorithms:

• D-OMP [34]: This algorithm proposes the differential orthogonal matching pursuit

(D-OMP) algorithm to track a dynamic sparse channel by exploiting its temporal cor-

relation.

• Modified-SP [36]: This algorithm exploits the prior support and quality information

provided by the previous estimated channel to enhance the current CE performance. We
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denote Ω̂t−1 and Ω̂t−2 as the estimated channel supports at the (t− 1)-th and (t− 2)-th

time slots. Then at t-th time slot, T0, s̄ and sc in [36] are set to be Ω̂t−1, |Ω̂t−1| and

|Ω̂t−1 ∩ Ω̂t−2|, respectively.

• OAMP [23]: The OAMP assumes i.i.d. sparse channel prior.

• Burst-LASSO [7]: The Burst-LASSO exploits the bursty structure of the channel in

the spatial domain.

• Structured Turbo-CS [25]: The structured Turbo-CS exploits the clustered structure

of channel in spatial domain.

• DCS-AMP [66]: The DCS-AMP exploits the temporal correlation of sparse signal

sequences.

• SBL-Off-Grid [27]: The SBL-Off-Grid obtained the true AoD values of the massive

MIMO channels by the SBL based algorithm.

• Optimally-Tuned Weighted LASSO [73]: The Optimally-Tuned Weighted LASSO

proposed in Chapter 2 exploits the prior support information obtained from the previ-

ously estimated channels to enhance the current CE performance.

To apply the proposed algorithm in a realistic channel, we update the statistic parameters

ρ , {ρSba, ρTca, ρbca, α, ζ, κ, σ2} where a, b, c ∈ {0, 1} using the EM framework [66]. Specif-

ically, the statistic parameters ρ are initialized using available prior knowledge6. In each

iteration of each time slot, they are updated based on the latest estimated marginal pos-

terior distribution of st, θt and xt. The detailed EM update equations for ρ are omitted

in this thesis for conciseness, interested readers can refer to [66] for detailed derivations.

Similarly, to apply the message-passing-based baselines in practical channel tracking, the

channel statistical parameters ({λ, ζ, σ2} for OAMP, {ρS01, ρ
S
10, ζ, σ

2} for Structured Turbo-

CS, {ρT01, ρ
T
10, α, ζ, κ, σ

2} for DCS-AMP are also updated by the EM framework. Both low-

frequency and high-frequency MIMO systems will be considered. In the low-frequency mas-

sive MIMO system, the BS has M = 128 antennas and the SCM will be used to generate

6Even though the recovery performance of the algorithm is not sensitive to the initial values of the statistic
parameters, their initial values would affect the convergence rate of the proposed algorithm. The more accurate
the initial values are, the faster the algorithm would converge. Therefore, we could set ρ based on some prior
knowledge to speed up the convergence of the algorithm.
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channels7. In the high-frequency massive MIMO systems, the BS has M = 256 antennas

and the mm-SSCM will be used to generate channels. We focus on the simulations for the

ULA. For the baselines, we use the fixed DFT basis except for the SBL-Off-Grid baseline,

which is using the off-grid basis, and the off-grid parameters are updated using the SBL.

For the proposed D-TOAMP algorithm, we verify its performance for both with and without

grid refinement. In the following simulation results, D-TOAMP (DFT) means the proposed

D-TOAMP algorithm with fixed DFT basis, i.e., βt in (3.2.4) is set to be 0; D-TOAMP

(Off-Grid) means the proposed D-TOAMP algorithm with off-grid basis, i.e., βt in (3.2.4) is

updated based on (3.5.6). We set Thr = 1− 10−2, ε = 10−7. The primary performance met-

ric that we used in all of our experiments, which we refer to as the time-averaged normalized

MSE (TNMSE), is defined as

TNMSE ,
1
T

T∑
t=1

‖x̂t − xt‖2

‖xt‖2 , (3.6.1)

where x̂t is the estimate of xt at t-th time slot.

3.6.1 Impact of SNR

In Fig. 3.12 and Fig. 3.13, we compare the TNMSE performance of different algorithms ver-

sus SNR under the SCM and the mm-SSCM, respectively. For each channel model, we also

consider the effect of the user velocity on the channel tracking performance. It can be seen

that under each user velocity value, the proposed D-TOAMP achieves sufficient performance

gain over all the baseline algorithms, under both less sparse SCM and more sparse mm-

SSCM. Moreover, the off-grid based D-TOAMP could further improve the channel tracking

performance by mitigating the off-grid leakage. This demonstrates that the proposed algo-

rithm can effectively track the realistic dynamic channels in a massive MIMO system by

exploiting the 2D dynamic sparsity of channels.

3.6.2 Impact of Pilot Number

In Fig. 3.14 and Fig. 3.15, we compare the TNMSE performance of different algorithms

versus the number of pilot sequences P under the SCM and the mm-SSCM, respectively.

7We consider wide sense stationary massive MIMO channel models in this thesis. How to extend the pro-
posed compressive CE algorithm to the non-wide sense stationary massive MIMO channels will be left as part
of future work.
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Figure 3.12: TNMSE versus SNR under the SCM. Set M = 128, P = 26, and T = 50. (a)
user velocity is 0.1m/s; (b) user velocity is 1m/s.
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Figure 3.13: TNMSE versus SNR under the mm-SSCM. Set M = 256, P = 22, and T = 50.
(a) user velocity is 0.1m/s; (b) user velocity is 1m/s.
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Figure 3.14: TNMSE versus pilot number under the SCM. Set M = 128, SNR= 15 dB, and
T = 50. (a) user velocity is 0.1m/s; (b) user velocity is 1m/s.
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Figure 3.15: TNMSE versus pilot number under the mmWave. Set M = 256, SNR= 15 dB,
and T = 50. (a) user velocity is 0.1m/s; (b) user velocity is 1m/s.
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For each channel model, we also consider the effect of the user velocity on the channel

tracking performance. It can be observed that the TNMSE performance decreases as the

number of pilots increases for all schemes. The proposed D-TOAMP algorithm can achieve

large performance gain over various baselines for different user velocity values and different

channel models. Moreover, the off-grid based D-TOAMP could further improve the channel

tracking performance. This verifies that the proposed algorithm can accurately recover a time

series of realistic channels with low pilot overhead.

3.7 Performance Comparison with Weighted LASSO

From Fig. 3.12 to Fig. 3.15, it can be seen that the proposed D-TOAMP algorithm achieves

better channel tracking performance than that of the weighted LASSO algorithm proposed

in Chapter 2 under practical massive MIMO channel models. The performance gain comes

from the following aspects:

• The type of measurement matrix: The optimal weight policy proposed in weighted

LASSO algorithm is based on the i.i.d. Gaussian measurement matrix. However,

the measurement matrix in D-TOAMP algorithm is set to be partial orthogonal, un-

der which, the weighted LASSO algorithm is no longer optimally tuned. As a result,

the performance of weighted LASSO algorithm will deteriorate.

• The structured sparsity of massive MIMO channels: The weighted LASSO algo-

rithm can only exploit the prior support information of massive MIMO channel induced

by temporal correlation, but cannot exploit its spatial correlation, i.e., clustered struc-

tured sparsity in the spatial domain. However, the proposed D-TOAMP algorithm can

exploit the 2D dynamic sparsity of massive MIMO channels both in spatial domain and

temporal domain to further improve the channel tracking performance.

• Off-grid mismatch tuning in D-TOAMP algorithm: The weighted LASSO algo-

rithm doesn’t consider the angular grid mismatch effect when representing the chan-

nel in angular domain, which can jeopardize the CS recovery performance. However,

the D-TOAMP adaptively tunes the off-grid parameters to mitigate the grid mismatch,

which can significantly improve the compressive CE performance especially when

SNR is high.
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Considering the computational complexity of these two algorithms, because the weighted

LASSO algorithm has the same computational complexity as the Burst LASSO algorithm,

from Fig. 3.11, it can be seen that the AMP based algorithm, e.g., D-TOAMP has much lower

computational complexity than the optimization based algorithm, e.g., weighted LASSO or

Burst LASSO.

3.8 Summary

We consider the downlink channel tracking problem for a massive MIMO system. Firstly,

we propose a statistical channel model called the 2D-MM to model the 2D dynamic sparsity

of massive MIMO channels. Then we propose a D-TOAMP algorithm that can be used to

recursively track sparse massive MIMO channels with 2D-MM prior. At each time slot, the

message passing will be performed based on the prior information passed from the previous

time slot and current measurements. Then we verify the superior performance of the pro-

posed channel tracking algorithm under two realistic channel models: SCM and mm-SSCM.

Extensive simulations show that the proposed off-grid based D-TOAMP algorithm derived

from the 2D-MM channel prior can effectively exploit the 2D dynamic sparsity of practical

massive MIMO channels to achieve significant gain over various baseline algorithms.

For clarify, we focus on frequency-flat fading channels in this chapter. In frequency-

selective fading channels, there is also structured sparsity in the delay/frequency domain [74].

An interesting future work is to propose a proper probability model to jointly capture the

structured sparsity in the spatial/delay/frequency domain and the temporal domain. The pro-

posed D-TOAMP framework can be extended to handle more practical frequency-selective

fading channel tracking problem, by modifying the MMSE estimator (Module B) according

to the new probability model. For multi-user massive MIMO channel tracking problem, an-

other possibility is to further exploit the common support structure of the multi-user channels

in spatial domain to enhance the channel tracking performance in multi-user massive MIMO

system.
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3.9 Appendix

3.9.1 Gradient Update for Off-grid Parameters

After the D-TOAMP-E step, the posterior estimation of xt at the i-th iteration is given by

p̂
(
xt|y(t),βit

)
= CN (xpostB,t , v

post
B,t I) (xpostB,t and vpostB,t are given by (3.5.33) and (3.5.34), re-

spectively). Then the surrogate function û(βt;βit) in (3.5.7) can be calculated as

û(βt;βit)

∝Ep̂(xt|y(t),βit)

[
− 1
σ2
e

‖yt − Ft (βt) xt‖2
]

∝− 1
σ2
e

(∥∥∥yt − Ft (βt) xpostB,t

∥∥∥2
+ vpostB,t tr

(
Ft (βt) Ft (βt)H

))
.

The derivative of û(βt;βit) w.r.t. βt can be calculated as ξ(i)
βt

=
[
ξ(i) (βt,1) , · · · , ξ(i) (βt,M)

]T
,

with

ξ(i) (βt,m)

=2Re
(
a′
(
ϑ̂m + βt,m

)H
UtUH

t a
(
ϑ̂m + βt,m

))
c

(i)
1 + 2Re

(
a′
(
ϑ̂m + βt,m

)H
Utc(i)

2

)
,

(3.9.1)

where c(i)
1 = − 1

σ2
e

(∣∣∣xpostB,t,m

∣∣∣2 + vpostB,t

)
, c(i)

2 = 1
σ2
e

(
xpostB,t,m

)?
yt,−m,

yt,−m = yt −UH
t

∑
j 6=m

a
(
ϑ̂j + βt,j

)
xpostB,t,j

and

a′
(
ϑ̂m + βt,m

)
= da

(
ϑ̂m + βt,m

)
/dβt,m.

Then the off-grid parameter βt is updated in the derivative direction, i.e., βi+1
t = βit+∆i ·ξ(i)

βit
.
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Chapter 4

Turbo-VBI for Robust Recovery of

Structured Sparse Signals with Uncertain

Measurement Matrix

4.1 Introduction

Consider the following linear measurement model:

y = Ax+w, (4.1.1)

where x = [x1, · · · , xN ]T ∈ CN is the high dimensional sparse signal need recovered, y ∈

CM is the measurements with M � N , A ∈ CM×N is the measurement matrix1, w =

[w1, ..., wM ]T ∈ CM is the AWGN noise vector with independent Gaussian entries wm ∼

CN (wm; 0, κ−1
m ), κm is the precision (inverse of the variance) of wm. In the standard CS

model, the measurement matrixA is assumed to be perfectly known and x is assumed to be a

simple i.i.d. sparse signal. However, in many practical applications, the measurement matrix

A (θ) may contain some uncertain parameters θ ∈ RK . Moreover, in specific applications,

the sparse signal x usually has structured sparsity that cannot be modeled easily by i.i.d.

priors. Even though the AMP-based algorithms, such as Turbo-AMP [24] and Turbo-CS [25]

can exploit the sophisticated priors, they perform badly under a general measurement matrix,

especially when the measurement matrix is ill-conditioned. The performance of SBL/VBI is

1We use A as the notation for measurement matrix in this chapter.
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insensitive to the measurement matrix. However, the two-layer hierarchical prior in SBL/VBI

can not handle more complicated sparse priors.

In this chapter, we propose a novel Turbo-VBI framework to overcome the drawbacks

of the existing methods and achieve robust recovery of structured sparse signals with more

general uncertain measurement matrix. The proposed Turbo-VBI framework can exploit so-

phisticated structured sparsity to improve the recovery performance. It is robust w.r.t. the

uncertain parameters in the measurement matrix and prior distribution and it works well for

more general measurement matrices with possibly correlated columns. The main contribu-

tions of this chapter are summarized below.

• Three-layer hierarchical probability model for structured sparsity: The choice of

sparse probability model is paramount to robust and accurate recovery of structured

sparse signals. A good sparse probability model should satisfy the following criteria:

it is flexible to capture different structured sparsities in various applications, it is robust

w.r.t. the imperfect prior information, it is tractable to enable low-complexity algorithm

design. We propose a three-layer hierarchical structured (3LHS) sparse prior model to

meet these criteria. Specifically, there are sufficient freedom in the model which can

be used to fit the specific structure of sparse signals in different applications as well as

incorporate the uncertainty of imperfect prior information.

• Turbo-VBI algorithm design: There still lacks efficient algorithms for solving CS

problems with 3LHS sparse prior and potentially ill-conditioned measurement matrix.

By combining the message passing and VBI approaches via the turbo framework, we

propose a Turbo-VBI algorithm which is able to fully exploit the structured sparsity

(as captured by the 3LHS sparse prior) under an uncertain (and possibly correlated)

measurement matrix to achieve significant gain over the-state-of-art CS recovery algo-

rithms.

The rest of this chapter is organized as follows. In Section 4.2, we present the 3LHS sparsity

model. In Section 4.3, we formulate the CS recovery problem under 3LHS sparse prior and

uncertain measurement matrix. In Section 4.4, we present the Turbo-VBI framework. Finally,

the summaries are given in Section 4.6.
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4.2 Three-Layer Hierarchical Structured Sparsity Model

4.2.1 Motivation of 3LHS Structured Sparsity

The probability model for structured sparsity provides the foundation for exploiting the spe-

cific sparse structures in different applications. There are two major existing probability

models for structured sparsity, as elaborated below.

4.2.1.1 Support-based Probability Model

In the AMP-based algorithms, a support-based probability model is used to capture the struc-

tured sparsity [24], where a hidden binary vector s is introduced to indicate the support of

the sparse signal s = [s1, ..., sN ]T . In particular, sn = 1 indicates that the signal coefficient

xn is active (non-zero), while sn = 0 indicates that xn is inactive (zero). Given the sup-

port vector s, x is assumed to have independent but non-identically distributed entries, i.e.,

p (x|s) = ∏N
n=1 p (xn|sn), where

p (xn|sn) = sngn(xn) + (1− sn) δ(xn), (4.2.1)

where gn(xn) denotes the PDF of xn conditioned on sn = 1, which is often chosen as a

Gaussian distribution. The structured sparsity is captured by the prior distribution p(s) of

the support vector. By choosing a proper p(s), the support-based probability model has the

flexibility to cover a wide range of structured sparsities, such as Markov sparsity [25] and

Markov tree sparsity [26]. However, it is difficult to handle the binary vector s using the

optimization-based algorithms and thus AMP-based algorithms are usually used to recover

sparse signals x with the support-based probability model, which limits its application since

AMP-based algorithms only work well for certain types of measurement matrix (e.g., i.i.d.

or partial orthogonal sensing matrices).

4.2.1.2 Two-layer Hierarchical Probability Model

In SBL/VBI, a two-layer hierarchical prior is used to promote i.i.d. or group sparsity [28,

75, 76], where a precision vector ρ = [ρ1, ..., ρN ]T (i.e., 1/ρn denotes the variance of xn)

is introduced to indicate whether the n-th element xn is active (ρn = Θ (1)) or inactive

(ρn � 1). Given the precision vector ρ, x is assumed to have independent but non-identically
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distributed Gaussian entries, i.e., p (x|ρ) = ∏N
n=1 p (xn|ρn), where

p (xn|ρn) = CN
(
xn; 0, ρ−1

n

)
,∀n. (4.2.2)

and ρn,∀n are modeled as independent Gamma distributions, i.e., p (ρ) = ∏N
n=1 p (ρn) with

p (ρn) = Γ (ρn; an, bn) , (4.2.3)

where an, bn are set to be a small number to promote sparsity of x [77]. The performance

of SBL/VBI with such two-layer hierarchical prior is insensitive to the measurement matrix.

It is also possible to model the group sparsity by assigning the same precision ρi to the i-th

group of elements in x. However, it is not flexible enough to model more complicated sparse

structures, such as the Markov (tree) priors or Hidden Markov priors considered in [25, 31],

because the precision vector ρ is fixed to be (independent) Gamma distributions to enable

tractable/low-complexity algorithm design based on SBL/VBI. Moreover, in many practical

applications, it is possible to obtain some statistical prior support information (PSI) which

indicates the probability of each element being active (i.e., Pr (sn = 1) ,∀n) [73]. However,

it is difficult to incorporate such statistical PSI into the two-layer hierarchical prior.

In the following, we shall introduce a 3LHS sparse model to capture the more complicated

structured sparsity that may occur in practice, by combining the advantages of the support-

based probability model and two-layer hierarchical prior.

4.2.2 Probability Model for the 3LHS Structured Sparsity

Without loss of generality, suppose the index set {1, ..., N} of x can be partitioned into

Q non-overlapping subsets I1, ...., IQ such that all the elements of x [Ii] ,∀i ∈ {1, ..., Q}

are simultaneously active or inactive. Correspondingly, we introduce a support vector s =

[s1, ..., sQ]T ∈ {0, 1}Q to indicate whether the i-th subvector x [Ii] is active (si = 1 ) or

inactive (si = 0). Specifically, let ρ = [ρ1, ..., ρN ]T denote the precision vector of x (i.e.,

1/ρn denotes the variance of xn). When si = 0, the distribution of the associated precision

parameters ρn,∀n ∈ Ii is chosen to satisfy E [ρn] � 1,∀n ∈ Ii such that the expected

variance of xn,∀n ∈ Ii is close to zero (inactive). Moreover, to improve the robustness w.r.t.

the imperfect prior knowledge, we assume that the prior distribution p (s|φ) of the support

vector depends on some uncertain parameter φ with a known prior distribution p (φ). Then
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Figure 4.1: Three-layer hierarchical structured sparse prior model.

for given uncertain prior parameter φ, the 3LHS sparse prior distribution (joint distribution

of x,ρ, s) is given by

p (x,ρ, s|φ) = p (s|φ)︸ ︷︷ ︸
Support

p (ρ|s)︸ ︷︷ ︸
Precision

p (x|ρ)︸ ︷︷ ︸
Sparse signal

. (4.2.4)

The 3LHS sparse model is illustrated in Fig. 4.1 and the details are elaborated below.

4.2.2.1 Probability Model for the Support Vector s (Layer 1)

The prior distribution p (s|φ) of the support vector is used to capture the structured sparsity

in specific applications. In practice, p (s|φ) is chosen based on the nature of the problem. For

example, in [25], p (s|φ) is chosen to be a Markov chain to model the clustered scattering

environment in massive MIMO channel, where φ denotes the (possibly unknown) transition

probabilities in the Markov chain. In [31], p (s|φ) is chosen to be a hidden Markov model

to model the structured sparsity in multi-user massive MIMO channels, where φ denotes

the transition probabilities and other parameters involved in the prior model. The uncertain

parameter φ can be automatically learned from the observations, as will be detailed later.
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4.2.2.2 Probability Model for the Precision Vector ρ (Layer 2)

The conditional probability p (ρ|s) for the precision vector is given by

p (ρ|s) =
Q∏
i=1

∏
n∈Ii

(Γ (ρn; an, bn))si
(
Γ
(
ρn; an, bn

))1−si
, (4.2.5)

where Γ (ρ; a, b) is a Gamma hyperprior with shape parameter a and rate parameter b. When

si = 1, x [Ii] is active. In this case, the shape and rate parameters an, bn of its precision

ρn,∀n ∈ Ii should be chosen such that an
bn

= E [ρn] = Θ (1) since the variance 1/ρn of

xn,∀n ∈ Ii is Θ (1) when it is active. On the other hand, when si = 0, x [Ii] is inactive. In

this case, the shape and rate parameters an, bn of its precision ρn,∀n ∈ Ii should be chosen

to satisfy an
bn

= E [ρn]� 1 such that the inactive coefficient xn,∀n ∈ Ii is close to zero. The

motivation of considering Gamma hyperprior for p (ρ|s) is twofold. First, it is conjugate to

Gaussian, hence the associated Bayesian inference can be performed in closed form as will

be detailed later. Moreover, as explained above, the conditional probability p (ρ|s) can be

used to capture the sparsity structure by controlling the mean of the precisions (i.e., the shape

parameter a and rate parameter b of the Gamma hyperprior) based on the support vector s.

4.2.2.3 Probability Model for the Sparse Signal x (Layer 3)

The conditional probability p (x|ρ) for the sparse signal is assumed to have a product form

p (x|ρ) = ∏N
n=1 p (xn|ρn) and each p (xn|ρn) is modeled as a complex Gaussian prior distri-

bution

p (xn|ρn) = CN
(
xn; 0, ρ−1

n

)
, ∀n = 1, ..., N. (4.2.6)

The motivation of considering complex Gaussian distribution for p (xn|ρn) is twofold. First,

random signals in the nature tend to have a Gaussian distribution due to the central limit the-

orem. Second, assuming conditional Gaussian prior distribution facilitates low-complexity

VBI algorithm design with closed-form update equations [28]. It is well known that the per-

formance of CS recovery algorithms is usually not sensitive to the true distribution of the

sparse signal x [28,58], as long as the proposed probability model can capture the first-order

sparse structure of x.
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The proposed 3LHS sparse model can enjoy the benefits of both the support-based prob-

ability model and two-layer hierarchical prior. On one hand, the flexibility of the support-

based probability model is preserved as we can choose a proper p(s|φ) to model different

structured sparsities in various applications. For example, in [26], p (s|φ) is chosen to be a

Markov tree prior to model the wavelet structure in image processing, where φ denotes the

statistical parameters (e.g., the transition probabilities) in the Markov tree prior, and it can

be automatically learned using, e.g., the EM-like method. Such complicated sparse structure,

however, cannot be modeled by the two-layer hierarchical prior in (4.2.2) and (4.2.3). On the

other hand, the 3LHS sparse model also facilitates the design of a Turbo-VBI algorithm, in

which the observation model y = A(θ)x+w with a general measurement matrix is handled

using the VBI approach, while the structured sparsity captured by the prior p(s) is handled

using the message passing approach. Note that there is no need to specify the layer 2 and

3 distributions p (ρ|s) and p (x|ρ) for each application since they are fixed as in (4.2.5) and

(4.2.6) for all applications.

4.3 CS Problem Formulation with 3LHS Sparse Prior

Recall the CS model with an uncertain measurement matrix

y = A(θ)x+w. (4.3.1)

Let p (θ), p (φ) and p (κ) denote the known (or assumed) prior distributions of the uncertain

parameter in measurement matrix, uncertain parameter in structured support model and noise

precision κ = [κ1, ..., κM ]T respectively. Our primary goal is to estimate the sparse signal x,

its support s, and the uncertain parameters ξ = [θ;φ;κ], given the observations y in model

(4.3.1). In particular, for given ξ, we are interested in computing the conditional marginal

posteriors p (x|y, ξ) and p (si|y, ξ) ,∀i (i.e., perform Bayesian inference for x and si,∀i),

where

p (x|y, ξ) ∝
∑
s

∫
p (y,x,ρ, s|ξ) dρ

=
∑
s

∫
p (x,ρ, s|φ) p (y|x,θ,κ) dρ, (4.3.2)
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p (si|y, ξ) ∝
∑
s−i

x
p (x,ρ, s|φ) p (y|x,θ,κ) dρdx, (4.3.3)

where p (y|x,θ,κ) = CN
(
y;A(θ)x, diag−1 (κ)

)
. We use ∝ to denote equality after scal-

ing, s−i to denote
{
si′ ,∀i

′ 6= i
}

. On the other hand, the uncertain parameters ξ are obtained

by MAP estimation as follows

ξ∗ = argmax
ξ

ln p(ξ|y)

= argmax
ξ

ln
∑
s

x
p (y,v, ξ) dρdx, (4.3.4)

where v = {x,ρ, s} is the collection of variables. Once we obtain the MAP estimate of ξ,

i.e., ξ∗, and the associated conditional marginal posteriors p (x|y, ξ∗), p (si|y, ξ∗) ,∀i, we can

obtain the MAP estimation of x and si (conditioned on ξ = ξ∗) as x∗ = argmaxxp (x|y, ξ∗)

and s∗i = argmaxsip (si|y, ξ∗).

It is very challenging to calculate the exact posterior in (4.3.2) because the factor graph of

the underlying model in (4.3.2) has loops. In the next section, we shall propose a Turbo-VBI

algorithm which approximately calculates the marginal posteriors p (x|y, ξ) and p (si|y, ξ) ,∀i

by combining the message passing and VBI approaches via the turbo framework, and use an

inexact block majorization-minimization (MM) method (which is a generalization of the EM

method) [27] to find an approximate solution for (4.3.4).

The above CS problem formulation embraces many applications. In the next chapter, we

will apply the proposed Turbo-VBI algorithm to user location tracking problem in massive

MIMO systems to show its superior performance.

4.4 Turbo-VBI Algorithm

The basic idea of Turbo-VBI is to simultaneously approximate the intractable posterior p (v|y, ξ)

with a tractable variational distribution q (v; ξ) and maximize the marginal posterior ln p(y, ξ)

with respect to the uncertain parameter ξ as in (4.3.4). In summary, the Turbo-VBI algorithm

performs iterations between the following two major steps until convergence.

• Turbo-VBI-E Step: For given ξ, evaluate q (v; ξ) to approximate the posterior p (v|y, ξ)

by combining the message passing and VBI approaches via the turbo framework, as

will be elaborated in Section 4.4.3 and 4.4.4;
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• Turbo-VBI-M Step: Given q (v; ξ) ≈ p (v|y, ξ), construct a surrogate function (lower

bound) for the objective function ln p(y, ξ), properly partition ξ into B blocks ξ =

(ξ1, ..., ξB), and then alternatively maximize the surrogate function with respect to each

ξj , as will be elaborated in Section 4.4.1.

In the following, we first elaborate the Turbo-VBI-M step, which is an extension of the

inexact block majorization-minimization (MM) method in [27]. Then we show how to con-

struct the surrogate function based on the EM method, which requires the calculation of

the posterior p (v|y, ξ). Finally, we elaborate how to approximately calculate the posterior

p (v|y, ξ) in the Turbo-VBI-E Step.

4.4.1 Turbo-VBI-M Step (Inexact Block MM)

It is difficult to directly maximize ln p(y, ξ) because there is no closed-form expression due to

the multi-dimensional integration over v. To make the problem tractable, in the Turbo-VBI-

M Step, we first properly partitions ξ into B blocks ξ = (ξ1, ..., ξB), such that the resultant

subproblem w.r.t. each block can be solved efficiently (e.g., has a closed-form or low com-

plexity solution). In many cases, ξ consists of several subsets of parameters ξ1, ..., ξB, where

each subset ξj has a distinct physical meaning. In this case, ξ can be naturally partitioned into

blocks according to the physical meaning of each block. Then we alternatively maximizes

a surrogate function of ln p(y, ξ) with respect to each ξj , j ∈ {1, · · · , B}. The surrogate

function is chosen such that the alternating maximization w.r.t. each variable ξj has a closed-

form/simple solution. Specifically, let u
(
ξ; ξ̇

)
be the surrogate function constructed at some

fixed point ξ̇, which satisfies the following properties:

u
(
ξ; ξ̇

)
≤ ln p(y, ξ̇), ∀ξ, (4.4.1)

u
(
ξ̇; ξ̇

)
= ln p(y, ξ̇), (4.4.2)

∂u
(
ξ; ξ̇

)
∂ξ

|ξ=ξ̇ = ∂ ln p (y, ξ)
∂ξ

|ξ=ξ̇. (4.4.3)

Then in the Turbo-VBI-M Step of the i-th iteration, we update ξj alternatively for j = 1, ..., B

as

ξ
(i+1)
j = argmax

ξj

u
(
ξj, ξ

(i)
−j; ξ

(i)
j , ξ

(i)
−j

)
, (4.4.4)
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where (·)(i) stands for the i-th iteration, ξ(i)
−j =

(
ξ

(i+1)
1 , ..., ξ

(i+1)
j−1 , ξ

(i)
j+1, ..., ξ

(i)
B

)
. The update

rule in (4.4.4) guarantees the convergence of the algorithm to a stationary point of (4.3.4)

[27]. The initial value of ξ is set according to the specific application scenario based on the

available prior knowledge of ξ. If it is difficult to find the global optimal solution of (4.4.4)

for some j ∈ J ⊆ {1, ..., B} (e.g., when u
(
ξ; ξ̇

)
, ∀j ∈ J is non-convex w.r.t. ξj), we can

partition the index set {1, ..., B} into to two subsets J and J = {1, ..., B} \J such that for

j ∈ J , u
(
ξ; ξ̇

)
is strongly convex w.r.t. ξj , while for j ∈ J , we do the following gradient

update:

ξ
(i+1)
j = ξ

(i)
j + γ(i)∂u

(
ξj, ξ

(i)
−j; ξ

(i)
j , ξ

(i)
−j

)
∂ξj

|
ξj=ξ(i)

j
, (4.4.5)

where γ(i) is the step size determined by the Armijo rule [78].

In the original inexact block MM method for massive MIMO channel estimation in [27],

there is only one non-convex block (i.e.,
∣∣∣J ∣∣∣ = 1), and the solution of maximizing the sur-

rogate function over each convex block in (4.4.4) for all j ∈ J is unique. The convergence

proof in [27] also relies on this fact. However, in the more general problem considered in this

chapter, it is possible that there are multiple non-convex blocks (i.e.,
∣∣∣J ∣∣∣ > 1). As a result, the

convergence proof in [27] can no longer be applied to our problem. To address this challenge,

we impose an additional condition that u
(
ξ; ξ̇

)
must be strongly convex w.r.t. ξj,∀j ∈ J ,

and obtain the following convergence theorem for the above Turbo-VBI algorithm. Please

refer to Appendix 4.7.1 for the detailed proof.

Theorem 4.1 (Convergence of Inexact MM). Suppose the surrogate function u
(
ξ; ξ̇

)
satis-

fies (4.4.1) - (4.4.3) and it is strongly convex w.r.t. ξj,∀j ∈ J . If at each iteration, we do the

exact update as in (4.4.4) for j ∈ J , and inexact (gradient) update as in (4.4.5) for j ∈ J ,

the iterates generated by the Turbo-VBI algorithm converge to a stationary point of Problem

(4.3.4).

Curious readers may wonder how the Turbo-VBI-E step plays a role in the convergence

proof. It turns out that in order to construct a surrogate function u
(
ξ; ξ̇

)
that satisfies the con-

ditions in (4.4.1) - (4.4.3) based on the EM method, we have to obtain the posterior p (v|y, ξ)

using the Turbo-VBI-E step. Therefore, the Turbo-VBI-E step is implicitly required in the

construction of surrogate function, as explained in the next subsection.
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4.4.2 EM-based Surrogate Function

Inspired by the EM method [30], we use the following surrogate function:

u
(
ξ; ξ̇

)
= uEM

(
ξ; ξ̇

)
+
∑
j∈J 1

τj
∥∥∥ξj − ξ̇j∥∥∥2

, (4.4.6)

where uEM
(
ξ; ξ̇

)
=
∫
p
(
v|y, ξ̇

)
ln p(v,y,ξ)

p(v|y,ξ̇)dv is the EM surrogate function used in [27],

J 1 ⊆ {1, ..., B} is the index set such that uEM
(
ξ; ξ̇

)
is convex but not strongly convex w.r.t.

ξj,∀j ∈ J 1, and τj > 0 can be any constant. The second term is added to ensure that (4.4.6)

is strongly convex w.r.t. ξj,∀j ∈ J , where J is the index set such that uEM
(
ξ; ξ̇

)
is convex

w.r.t. ξj,∀j ∈ J . It can be shown that the surrogate function in (4.4.6) satisfies (4.4.1) -

(4.4.3). Therefore, if we can calculate the exact posterior p
(
v|y, ξ̇

)
for given ξ̇, we can con-

struct the surrogate function in (4.4.6) and the corresponding Turbo-VBI algorithm converges

to a stationary point of (4.3.4). Unfortunately, in many cases, the exact posterior p
(
v|y, ξ̇

)
is intractable. Thus, we propose to combine the message passing and VBI approaches via the

turbo framework to find an alternative probability density function q
(
v; ξ̇

)
to approximate

the posterior p
(
v|y, ξ̇

)
for any given ξ̇ in the Turbo-VBI-E Step, which is expected to be

close to the true posterior [28]. Then we construct a tractable surrogate function as

û
(
ξ; ξ̇

)
= ûEM

(
ξ; ξ̇

)
+
∑
j∈Ĵ 1

τj
∥∥∥ξj − ξ̇j∥∥∥2

, (4.4.7)

where

ûEM
(
ξ; ξ̇

)
=
∫
q
(
v; ξ̇

)
ln p (v,y, ξ)

q
(
v; ξ̇

) dv

is an approximation of uEM
(
ξ; ξ̇

)
, Ĵ 1 is defined based on the convexity of ûEM

(
ξ; ξ̇

)
w.r.t.

each block similar to J 1. Since the posterior approximation q
(
v; ξ̇

)
obtained in the Turbo-

VBI-E Step is usually accurate enough [28], û
(
ξ; ξ̇

)
is expected to approximately satisfy

(4.4.1) - (4.4.3), and thus such approximation has little effect on the convergence of the

proposed algorithm, as verified in the simulations. Therefore, after the convergence of the

Turbo-VBI with the tractable surrogate function in (4.4.7), we not only obtain an approximate

stationary solution ξ̂ of (4.3.4), but also the associated (approximate) conditional marginal

posteriors p
(
x|y, ξ̂

)
≈ q

(
x; ξ̂

)
and p

(
si|y, ξ̂

)
≈ q

(
si; ξ̂

)
,∀i.
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Figure 4.2: Factor graph of the joint distribution in (4.3.2). For easy illustration, we assume
every two adjacent elements of the sparse signal x form a group, i.e., Q = N/2 and Ii =
{2i− 1, 2i}.

Factor Distribution Functional form
gm(ym,x) p (ym|x, ξ) CN (ym;Am (θ)x, κ−1

m )
fn (xn, ρn) p (xn|ρn) CN

(
xn; 0, ρ−1

n

)
ηi (ρ [Ii] , si) p (ρ [Ii] |si)

∏
n∈Ii (Γ (ρn; an, bn))si

(
Γ
(
ρn; an, bn

))1−si

h (s) p (s) depends on application

Table 4.1: Factors, distributions and functional forms in Fig. 4.2. Am (θ) denotes the m-th
row ofA (θ).

4.4.3 Modules of the Turbo-VBI-E Step

The factor graph of the joint distribution p (y,v|ξ), denoted by G, is illustrated in Fig. 4.2,

where the function expression of each factor node is listed in Table 4.1. Since G is a dense

graph with many loops, directly applying the sum-product message passing (SPMP) [79] over

the entire factor graph G usually cannot achieve a good performance. When the measurement

matrix is i.i.d. Gaussian or partial orthogonal, Turbo-AMP [26] and Turbo-CS [25] algo-

rithms can be used to achieve approximate message passing over dense graphs. However, in

our problem, the measurement matrix A(θ) can be ill conditioned and the performance of

Turbo-AMP or Turbo-CS is very poor, as verified by the numerical simulations. To overcome

this challenge, we combine the VBI [28] and message passing approaches [79] via the turbo

framework to design the Turbo-VBI-E step that can achieve approximate message passing

over G with a good performance.
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Figure 4.3: Modules of the Turbo-VBI algorithm and message flows between different mod-
ules.

Specifically, we follow the turbo framework and partition the factor graph G into two

parts, as shown in Fig. 4.3, where Part A contains the dense subgraph Gx (as well as a copy of

the support vector s and an additional set of factor nodes hA,i, i = 1, ..., Q), and Part B con-

tains subgraph Gs (and an additional set of factor nodes hB,i, i = 1, ..., Q). Correspondingly,

the Turbo-VBI-E step has two modules to perform Bayesian inference (message passing) over

Part A and Part B, respectively. Moreover, Module A and Module B also need to exchange

messages between them, as shown in Fig. 4.3. In particular, the messages {νηi→si (·)} form

the outputs of Module A and the inputs of Module B, while the messages {νh→si (·)} form the

outputs of Module B and the inputs of Module A. The two modules are executed iteratively

until convergence. In the following, we first outline Module A and Module B. The details of

Module A are presented in Subsection 4.4.4.

Based on the observation y and messages {νh→si (·)} from Module B, Module A performs

the sparse VBI [28] to calculate the approximate conditional marginal posteriors q (x; ξ) ≈

p (x|y, ξ); q (ρ; ξ) ≈ p (ρ|y, ξ); and q (si; ξ) ≈ p (si|y, ξ) ,∀i. To be more specific, in Part
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A, the factor nodes

hA,i (si) , νh→si (si) , i = 1, ..., Q,

incorporate the prior information from Module B. Therefore, the following prior distribution

is assumed when performing the sparse VBI in Module A:

p̂ (x,ρ, s) = p̂ (s) p (ρ|s) p (x|ρ) , p̂ (s) =
∏
i

(πi)si (1− πi)1−si , (4.4.8)

where

πi , p̂ (si = 1) = νh→si (1)
νh→si (1) + νh→si (0) .

Note that the only difference between the prior in (4.4.8) and the original prior in (4.2.4) is

that the prior distribution p (s|φ) of the support vector is replaced with a prior p̂ (s) with

independent entries. The corresponding posterior distribution of x obtained by the sparse

VBI is complex Gaussian, as will be given in (4.4.14), and the posterior distribution q (si) of

si will be given by (4.4.20). After that, the messages {νηi→si (si)} from Module A to Module

B can be calculated from the posterior distribution q (si) by subtracting the input message

{νh→si (si)} as [22]

νηi→si (si) = q (si)
νsi→ηi (si)

, (4.4.9)

where the denominator of (4.4.9) equals to νh→si(si) according to the sum product rule.

Based on the messages {νηi→si (·)} from Module A, Module B further exploits the struc-

tured sparsity as captured by the prior distribution p (s) of the support vector to improve the

estimation performance, by performing the SPMP algorithm over the support subgraph Gs in

Part B. To be more specific, in Part B, the factor nodes

hB,i (si) , νηi→si (si) , i = 1, ..., Q

incorporate the prior information from Module A, and the factor node h incorporates the

structured sparsity. After that, the messages {νh→si (·)} from Module B to Module A can be

calculated according to the sum-product rule.
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4.4.4 Sparse VBI Estimator (Module A)

4.4.4.1 Outline of Sparse VBI

For convenience, we use vk to denote an individual variable in v, such as x, ρ and si. Let

H = {k|∀vk ∈ v}. Based on the VBI method, the approximate conditional marginal poste-

rior could be calculated by minimizing the Kullback-Leibler divergence (KLD) [28] between

p̂ (v|y, ξ) and q (v; ξ) subject to a factorized form constraint on q (v; ξ) as

AVBI : q? (v; ξ) = arg min
q(v;ξ)

∫
q (v; ξ) ln q (v; ξ)

p̂ (v|y, ξ)dv (4.4.10)

s.t. q (v; ξ) =
∏
k∈H

q
(
vk; ξ

)
, (4.4.11)

∫
q
(
vk; ξ

)
dvk = 1,∀k ∈ H (4.4.12)

where p̂ (v|y, ξ) is the posterior distribution of v with the prior p̂ (x,ρ, s) in (4.4.8), and for

discrete variable s,
∫

(·)dvk means the summation over the set of all possible discrete values of

s. In this section, ξ is fixed and we will omit the argument ξ in q (v; ξ) for simplicity. Solving

AVBI yields a good approximation of the true posterior p̂ (v|y, ξ) and such a VBI method has

been widely used in Bayesian inference with great success [28]. Since problem AVBI is

non-convex, the uniqueness of the optimal solution may not be guaranteed. Fortunately, the

existence of the optimal solution has been proved in [28]. In the following, we aim at finding

a stationary solution (denoted by q∗ (v)) of AVBI, as defined below.

Definition 4.1 (Stationary Solution of AVBI). q∗ (v) = ∏
k∈H q

∗
(
vk
)

is called a stationary

solution of Problem AVBI if it satisfies all the constraints in AVBI and ∀k ∈ H,

q∗
(
vk
)

= arg min
q(vk)

w ∏
l 6=k

q∗
(
vl
)
q
(
vk
)

ln
∏
l 6=k q

∗
(
vl
)
q
(
vk
)

p̂ (v|y, ξ) .

By finding a stationary solution q∗ (v) of AVBI, we could obtain the approximate posterior

q∗
(
vk
)
≈ p

(
vk|y, ξ

)
,∀k ∈ H.

A stationary solution of AVBI can be obtained via alternately optimizing each individual

density q
(
vk
)
, k ∈ H, as will be proved by Lemma 4.1. Specifically, for given q

(
vl
)
,∀l 6=

k, the optimal q
(
vk
)

that minimizes the KLD in AVBI is given by [28]

q
(
vk
)
∝ exp

(
〈ln p̂ (v,y|ξ)〉∏

l 6=k q(vl)
)
, (4.4.13)
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where 〈f (x)〉q(x) =
∫
f (x) q(x)dx. Based on (4.4.13), the update equations of all variables

are given in the subsequent subsections. The detailed derivation can be found in Appendix

4.7.2. Note that the operator 〈·〉vk is equivalent to 〈·〉q(vk) and the expectation
〈
f
(
vk
)〉

q(vk)
w.r.t. its own approximate posterior is simplified as

〈
f
(
vk
)〉

.

4.4.4.2 Initialization of Sparse VBI

In order to trigger the alternating optimization (AO) algorithm, we use the following initial-

izations for the distribution functions q (s) and q (ρ).

• In the first outer iteration, initialize q (s) = p̂ (s) = ∏Q
i=1 p̂ (si) with p̂ (si) = (πi)si (1− πi)1−si .

In the rest outer iterations, initialize q (s) = ∏Q
i=1 (π̃i)si (1− π̃i)1−si , where π̃i is the

(approximate) posterior probability of si = 1 calculated from Module A (sparse VBI

estimator) in the previous outer iteration.

• Initialize a gamma distribution for ρ: q (ρ) = ∏N
n=1 Γ

(
ρn; ãn, b̃n

)
, where ãn = πian +

(1− πi) an, b̃n = πibn + (1− πi) bn, ∀n ∈ Ii,∀i.

4.4.4.3 Update for x

From (4.4.13), the update for q (x) only depends on q (ρ). For given q (ρ), q (x) can be

derived as

q(x) = CN (x;µ,Σ) , (4.4.14)

where µ and Σ can be calculated through

Σ =
(
diag (〈ρ〉) +A (θ)H diag (κ)A (θ)

)−1
, (4.4.15)

µ = ΣA (θ)H diag (κ)y. (4.4.16)

4.4.4.4 Update for ρ

From (4.4.13), for given q (s) and q (x), q (ρ) can be derived as

q (ρ) =
N∏
n=1

Γ
(
ρn; ãn, b̃n

)
, (4.4.17)
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where the approximate posterior parameters ãn, b̃n are given by:

ãn = 〈si〉 an + 〈1− si〉 an + 1, (4.4.18)

b̃n =
〈
|xn|2

〉
+ 〈si〉 bn + 〈1− si〉 bn,∀n ∈ Ii,∀i. (4.4.19)

4.4.4.5 Update for s

From (4.4.13), the update for q (s) only depends on q (ρ). From (4.4.13), for given q (ρ),

q (s) can be derived as

q (s) =
Q∏
i=1

(π̃i)si (1− π̃i)1−si , (4.4.20)

where π̃i is given by

π̃i = 1
C

∏
n∈Ii

πib
an
n

Γ(an)e
(an−1)〈ln ρn〉−bn〈ρn〉, (4.4.21)

and C is the normalization constant, given by

C =
∏
n∈Ii

πib
an
n

Γ(an)e
(an−1)〈ln ρn〉−bn〈ρn〉 +

∏
n∈Ii

(1− πi)b
an
n

Γ(an) e(an−1)〈ln ρn〉−bn〈ρn〉.

The involved expectations are given as follows for ∀i ∈ {1, ..., Q}, n ∈ {1, ..., N}:

〈si〉 = π̃i, 〈1− si〉 = 1− π̃i, (4.4.22)

〈ρn〉 = ãn

b̃n
, 〈ln ρn〉 = ψ (ãn)− ln

(
b̃n
)
, (4.4.23)

〈x〉 = µ,
〈
|xn|2

〉
= |µn|2 + Σn, (4.4.24)

where ψ (x) = d
dx

ln (Γ (x)) is the digamma function, defined as the logarithmic derivative

of the gamma function, µn is the n-th element of µ, and Σn is the n-th diagonal element of

matrix Σ.

4.4.4.6 Convergence of Sparse VBI

The sparse VBI can be viewed as an AO method [80] to solve AVBI. It is clear that the

sparse VBI can monotonically decreasing the objective value in AVBI, and thus the objective

value will converge to a limit. Moreover, for given q
(
vl
)
,∀l 6= k, the optimal q

(
vk
)

that

minimizes the KLD in AVBI is unique. Then according to the convergence of AO in [80], we
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Algorithm 4.1 Turbo-VBI algorithm
Input: y, prior distributions p (θ), p (φ) and p (κ), measurement matrix A(θ), which is a
function of unknown variable θ.
Output: ξ∗, x∗, s∗i , ∀i.

1: Initialize the uncertain parameters ξ, and the message πi , νh→si (1).
2: while not converge do
3: Turbo-VBI-E Step:
4: %Module A: Sparse VBI Estimator
5: Initialize the distribution functions q (s) and q (ρ).
6: while not converge do
7: Update q (x; ξ) using (4.4.14) and the related expectations using (4.4.24).
8: Update q (ρ; ξ) using (4.4.17) and the related expectations using (4.4.23).
9: Update q (s; ξ) using (4.4.20) and the related expectations using (4.4.22).

10: end while
11: Calculate the extrinsic information of si based on (4.4.9), send νηi→si (si) to Module

B.
12: % Module B:
13: Perform the SPMP over the support subgraph Gs, send νh→si (si) to Module A.
14: Turbo-VBI-M Step:
15: Construct the surrogate function û in (4.4.7) using the approximate posterior output of

Module A, i.e., q (v; ξ).
16: Update ξj alternatively for j = 1, ..., B using (4.4.4) for j ∈ J and (4.4.5) for j ∈ J .
17: end while
18: Output ξ∗, x∗ = arg maxx q (x; ξ) = µ and s∗i = arg maxsi q (si; ξ).

have the following convergence theorem for the sparse VBI.

Lemma 4.1 (Convergence of Sparse VBI). Every limiting point q∗ (v) = ∏
k∈H q

∗
(
vk
)

gen-

erated by the sparse VBI using (4.4.14), (4.4.17) and (4.4.20) with the initialization in Section

4.4.4.2 is a stationary solution of Problem AVBI.

Finally, the overall Turbo-VBI algorithm is summarized in Algorithm 4.1.

4.5 Comparison with Weighted LASSO and Turbo-OAMP

Algorithm

Compared to the weighted LASSO algorithm in Chapter 2 and Turbo-OAMP based algorithm

in Chapter 3, the Turbo-VBI algorithm proposed in this chapter has the following advantages:

• The Turbo-VBI algorithm can be applied to a general measurement matrix, e.g., ill-

conditioned measurement matrix or measurement matrix with uncertain parameters.

However, the optimal weight policy in weighted LASSO algorithm is proposed for
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i.i.d. Gaussian measurement matrix, and Turbo-OAMP algorithm is proposed for par-

tial orthogonal measurement matrix. Under a more general measurement matrix, the

performance of weighted LASSO and Turbo-OAMP algorithm will deteriorate or even

diverge.

• The Turbo-VBI and Turbo-OAMP algorithm can exploit complicated structured spar-

sities, e.g., Markov structure or Markov tree structure. However, the LASSO based

algorithm can only exploit simple structured sparsity, such as group sparsity or statisti-

cal prior support information. For complicated structured sparsities, it’s hard to design

a proper regularization function and find the optimal regularizer parameter in a LASSO

based algorithm.

• The Turbo-VBI and Turbo-OAMP algorithm can automatically learn the model param-

eters from the data through EM framework. However, the LASSO based algorithms

cannot handle uncertain parameters involved in the model.

4.6 Summary

We propose a novel Turbo-VBI framework for robust recovery of structured sparse signals

under uncertain (and possibly correlated) measurement matrices. To capture various sophis-

ticated structured sparsities in practice, we propose a new 3LHS sparse prior model which

is not only more flexible than existing commonly used sparse models, but also tractable

for low complexity algorithm design. To handle the 3LHS sparse prior model and un-

certain/correlated measurement matrix, we propose a Turbo-VBI algorithm which approx-

imately calculates the marginal posteriors of the sparse signal by combining the message

passing and VBI approaches via the turbo framework, and use an inexact block MM method

(which is a generalization of the EM method) to find an approximate MAP estimator for

the uncertain parameters in the measurement matrix. We further establish the convergence

of the inexact block MM and sparse VBI components in the Turbo-VBI framework. In the

next chapter, we will apply the proposed Turbo-VBI framework to solve the location tracking

problem in massive MIMO systems.
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4.7 Appendix

4.7.1 Proof of Theorem 4.1

Using the property of surrogate function and gradient update, we have

ln p(y, ξ(i)
j , ξ

(i)
−j) = u

(
ξ

(i)
j , ξ

(i)
−j; ξ

(i)
j , ξ

(i)
−j

)
≤ u

(
ξ

(i+1)
j , ξ

(i)
−j; ξ

(i)
j , ξ

(i)
−j

)
≤ ln p(y, ξ(i+1)

j , ξ
(i)
−j), ∀j ∈ J ,

where the equality holds only when the gradient w.r.t. ξj is zero, i.e., the gradient update

in (4.4.5) always strictly increases the surrogate function and the original objective function

whenever
∂u

(
ξj ,ξ

(i)
−j ;ξ

(i)
j ,ξ

(i)
−j

)
∂ξj

6= 0. It is clear that the update in (4.4.4) obtained by maximizing

the surrogate function also always strictly increases the surrogate function and the original

objective function whenever
∂u

(
ξj ,ξ

(i)
−j ;ξ

(i)
j ,ξ

(i)
−j

)
∂ξj

6= 0. Therefore, the objective value will keep

increasing until converging to a certain value p∗, and we must have

lim
i→∞

∂u
(
ξj, ξ

(i)
−j; ξ

(i)
j , ξ

(i)
−j

)
∂ξj

= 0,∀j, (4.7.1)

(otherwise, the objective value will keep increasing to infinity, which contradicts with the

fact that ln p(y, ξ(i+1)
j , ξ

(i)
−j) must be bounded above). Then according to (4.7.1) and the prop-

erty of gradient update, we must have limi→∞

∥∥∥ξ(i+1)
j − ξ(i)

j

∥∥∥ = 0,∀j ∈ J . Moreover, it

follows from (4.7.1) and the strong convexity of u
(
ξj, ξ

(i)
−j; ξ

(i)
j , ξ

(i)
−j

)
w.r.t. ξj,∀j ∈ J that

limi→∞

∥∥∥ξ(i+1)
j − ξ(i)

j

∥∥∥ = 0,∀j ∈ J . Therefore, we have

lim
i→∞

∥∥∥ξ(i+1)
j − ξ(i)

j

∥∥∥ = 0,∀j. (4.7.2)

It follows from (4.7.2) that all the B sequences
{
ξ

(i)
j , ξ

(i)
−j

}
, j = 1, ..., B have the same set

of limiting points. Let
{
ξ

(it)
j , ξ

(it)
−j , t = 1, 2, ...

}
denote a subsequence that converges to a

limiting point ξ∗. Suppose ξ∗ is not a stationary point of ln p(y, ξ), then ∂ ln p(y,ξ∗)
∂ξ

6= 0 and

it follows from (4.7.2) that limt→∞
∂u

(
ξj ,ξ

(it)
−j ;ξ(it)

j ,ξ
(it)
−j

)
∂ξj

6= 0 must hold at least for some j,

which contradicts with (4.7.1). Therefore, every limiting point ξ∗ must be a stationary point

of ln p(y, ξ).
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4.7.2 Derivation of (4.4.14)-(4.4.21)

Based on (4.4.13), q(x) in (4.4.14) can be obtained as

ln q(x)

∝〈ln p (x|ρ)〉ρ + ln p (y|x, ξ)

∝− xHdiag (〈ρ〉)x−
∥∥∥diag1/2 (κ) (y −A(θ)x)

∥∥∥2

∝− (x− µ)H Σ−1 (x− µ) .

q(ρ) in (4.4.17) can be obtained as

ln q(ρ)

∝〈ln p (x|ρ)〉x + 〈ln p (ρ|s)〉s

∝
Q∑
i=1

∑
n∈Ii

(〈si〉 an + 〈1− si〉 an) ln ρn −
(〈
|xn|2

〉
+ 〈si〉 bn + 〈1− si〉 bn

)
ρn

∝
Q∑
i=1

∑
n∈Ii

(ãn − 1) ln ρn − b̃nρn.

q(s) in (4.4.20) can be obtained as

ln q(s)

∝〈ln p (s|ρ)〉ρ + ln p̂ (s)

∝
Q∑
i=1

∑
n∈Ii

si (ln bann + (an − 1) 〈ln ρn〉 − bn 〈ρn〉 − ln Γ(an))

+ (1− si)
(
ln bann + (an − 1) 〈ln ρn〉 − bn 〈ρn〉 − ln Γ(an)

)
+

Q∑
i=1

(si ln πi + (1− si) ln (1− πi))

∝
Q∑
i=1

∑
n∈Ii

si ln πib
an
n

Γ(an)e
(an−1)〈ln ρn〉−bn〈ρn〉 + (1− si) ln (1− πi)b

an
n

Γ(an) e(an−1)〈ln ρn〉−bn〈ρn〉


∝ ln

Q∏
i=1

(π̃i)si (1− π̃i)1−si .
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Chapter 5

D-VBI for User Location Tracking in

Massive MIMO Systems

In this chapter, we apply the Turbo-VBI framework proposed in Chapter 4 to user location

tracking problem in massive MIMO system, and propose a variant of Turbo-VBI framework,

i.e., D-VBI to tackle the challenges arising in this specific application.

5.1 Introduction

Location-based services (LBSs) are gaining increasing popularity these days resulting from

the increasing importance of ubiquitous computing and context-dependent information, and

the advances in localization-based technologies [81–83]. The crucial point when realizing

this class of service is continuous position tracking at regular intervals to monitor the spatial

objects, detect the relationship between a user and his or her surroundings and proactively

perform actions [83]. To fulfill the needs of tracking, current mobile devices are equipped

with several positioning methods that are based on the Global Positioning System (GPS),

WiFi or cell-identity (CID). However, GPS positioning is not suitable for indoor and non-

line-of-sight (NLOS) positioning, and has huge power consumption on mobile devices [82].

Additionally, positioning performances of WiFi and CID are poor [82, 83].

On the other hand, massive MIMO, which operates with a large number of antennas at

the base station (BS), is a promising technology to meet the capacity demand in 5G wireless

networks due to its increased spectral efficiency, high directivity and low complexity [32]. In

addition to the communication benefits, the massive MIMO technique could also be exploited
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to enable high-accuracy localization [38, 39]. In this chapter, we focus on using massive

MIMO systems for efficient tracking of user location.

However, massive-MIMO-based localization is far from mature and there are only a few

recent works on this topic. [84] and [85] proposed received-signal-strength (RSS)-based po-

sitioning by fingerprinting and machine learning methods in a distributed massive MIMO

system, respectively. [86] proposed to locate a mobile station (MS) by exploiting changes in

the statistics of the sparse beam space channel matrix. However, these methods are based

on data training, which requires a huge amount of training data and cannot work well in a

dynamic environment with random wireless fading channels. Angle of arrivals (AoA) es-

timation was used in [39] and [87], and the combined estimation of time-of-arrival (ToA),

angle of departure (AoD) and AoA was used in [38] and [88] for positioning users in massive

MIMO systems. In [89], a novel hybrid RSS-AoA-based localization approach was proposed

for a millimeter-wave massive MIMO system. All of the above works belong to the indirect

localization method, i.e., the intermediate parameters such as the AoA, ToA or RSS are first

estimated from the received signals, and then the user’s position is determined via trilater-

ation or triangulation. However, in dense multipath environments, such as urban or indoor

areas, the performance of such an indirect localization method will be degraded due to the

inability to correctly detect and/or estimate the intermediate parameters (AoA, ToA, RSS) of

the line-of-sight (LOS) path [90].

One alternative way to address the localization problem is the direct localization ap-

proach [91]. Instead of calculating through the intermediate parameters, the user’s location is

estimated directly from the received signals in direct localization. Initially, the direct local-

ization approach was applied to the pure LOS environment [91]. Later on, it was extended to

the multi-path environment in [90,92]. Specifically, a direct localization was proposed in [90]

for massive MIMO systems, which models the LOS channels as group sparse directly using

the user’s location, and assumes the NLOS paths have arbitrary AoAs. In a cellular network,

direct localization requires the received signals from the BSs to be sent to the cloud radio

access network (C-RAN) to cooperatively estimate the location.

These works focus on the static localization problem, which considers the localization at

one instant of time. Instead of performing individual localization at each time slot, we could

exploit the user mobility and the temporal correlation of wireless channels to improve the

location tracking accuracy. In [93], the user is assumed to be moving among neighboring
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grid cells, and a Markov model (MM) is used to predict the user’s movement. Such a user

mobility model induces probabilistic temporal correlation (PTC) of massive MIMO channel

support (indices of the non-zero elements). Moreover, in direct localization, the LOS chan-

nels between the user and different BSs all originate from the same user position; therefore,

the energies of the LOS channels associated with different BSs all concentrate on the same

location index, which will induce a group-sparsity (GS) structure of the LOS channels. We

call this joint property of massive MIMO channels PTC-GS in this paper. Many works have

studied the recovery of dynamic sparse signals. For example, [94] proposed a block SBL

framework to exploit the temporal correlation of sources; [95] proposed a fast SBL algorithm

to handle the time-varying states. However, the simple row sparse model considered in [94]

and the diagonal first-order vector auto-regressive process considered in [95] cannot capture

the PTC-GS structure considered in this paper. The message-passing-based algorithms, such

as [24,25,96], could capture more complicated priors. However, they only work for the i.i.d.

Gaussian or partial orthogonal measurement matrix, which is not the case in the localization

problem. To the best of our knowledge, how to exploit the PTC-GS to enhance the perfor-

mance of user location tracking in massive MIMO systems has not been fully studied. In

this chapter, we propose a 3LHS sparse model, i.e., temporal Markov group-sparse (TMGS)

model to capture the PTC-GS of massive MIMO channels. Based on this, a variant of the

Turbo-VBI framework, i.e., dynamic variational Bayesian inference (D-VBI) algorithm is

proposed to track the user’s location in massive MIMO systems. The main contributions are

summarized below.

• Probability model for PTC-GS in user location tracking: The direct localization

algorithm in [90] is based on a simple group-sparse model that cannot exploit the PTC

effect. The conventional user mobility models, such as the hidden Markov in [93],

Gauss-Markov in [97] and random walk in [98] are all Markovian, but they cannot

capture the GS structure of the channel vectors induced by the cooperative localiza-

tion. Moreover, their observation models are not suitable for massive MIMO systems.

Therefore, we propose a TMGS model to capture the joint GS and PTC structure of the

massive MIMO channels in user location tracking problem.

• Dynamic variational Bayesian inference for TMGS prior with ill-conditioned mea-

surement matrix: The location tracking is formulated as a sparse Bayesian inference

problem, which could be solved by Bayesian-inference-based approaches like VBI [28]
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Figure 5.1: Illustration of the localization model in massive MIMO systems.

and SBL [27, 99]. However, the existing Bayesian methods cannot handle the compli-

cated TMGS prior directly. Even though the message-passing-based algorithms, such

as Turbo-AMP [24] and Turbo-CS [25], can be adopted to handle complicated pri-

ors, they perform poorly under more general measurement matrix. Unfortunately, the

measurement matrix in the location tracking problem is ill-conditioned. Therefore, we

resort to the Turbo-VBI framework proposed in Chapter 4 to address these challenges

and propose a D-VBI algorithm to fully exploit the PTC-GS (as captured by the TMGS

prior) and works well for the ill-conditioned measurement matrix.

The rest of the chapter is organized as follows. In Section 5.2, we give the system model for

the user location tracking in massive MIMO systems. In Section 5.3, we propose the TMGS

probability model to capture the PTC-GS of massive MIMO channels, and formulate the

resulting problem. The proposed D-VBI algorithm is presented in Section 5.4. Finally, the

simulation results are given in Section 5.5 to verify the advantages of the proposed solution,

and the summaries are given in Section 5.6.
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5.2 System Model

5.2.1 Localization Model

Consider a 2D geographical area X , which is known as a priori1. Within this area, there is

a mobile user, whose location is being tracked by L massive MIMO BSs over T time slots

based on the uplink signals from the user. We consider a single antenna user, and the BS l has

a phased array with Nl antennas. The array responses are assumed to be known by the BSs.

At the t-th time slot (1 ≤ t ≤ T ), the user is located at pt = [pxt , p
y
t ]T in X , the center of the

gravity of the stations’ arrays are located at p̃l = [p̃xl , p̃
y
l ]T and assumed to be in the far field

with respect to the user, as shown in Fig. 5.1. In this paper, we consider massive MIMO at

the BS side and the practical physical finite scattering channel model. For a typical cellular

configuration with a tower-mounted BS, there is limited scatterers around the BS. This leads

to a small angular spread in the angular domain at the BS side [100–102], implying that only

a small fraction of angular bins contain almost all the energy from the multipath signals.

As a result, the channel has a sparse or an approximate sparse representation on the virtual

angular domain [2, 90]. We consider flat fading channel and narrow band system in this

paper, however the proposed algorithm can be extended to frequency-selective fading channel

easily2.

At time slot t, the user broadcasts a signal ut, which propagates through the multi-path

environment resulting in a received signal at BS l given by [2, 90]

yt,l = al (θt,l (pt))αt,lut +
Pl∑
i=1

al
(
θit,l
)
αit,lut + nt,l, (5.2.1)

in which al(θ) ∈ CNl×1 is the array response vector at BS l for the AoA θ, nt,l ∈ CNl×1 stands

for the additive complex Gaussian noise with each element zero mean and σ2
t,l variance, αt,l

and θt,l stand for the complex channel gain and the AoA corresponding to the LOS path,

respectively, for BS l, αit,l and θit,l are the channel gain and AoA of the i-th NLOS path,

1By saying this, we mean the geographical area where the user may appear is known in advance. However,
the propagation environment between user and BSs is unknown, such as the locations of the scatterers, the
number of the scatterers, etc.

2In frequency-selective fading channel, the PTC-GS structure still holds for the channel at each subcarrier.
The proposed algorithm can be directly used to track user’s locations employing one subcarrier. On the other
hand, the proposed algorithm can be extended to incorporate the ToA information in wideband system by
introducing a two-dimensional (2D) grid of both AoAs and ToAs. However, this will increase the computation
burden. For simplicity and clarity, we concentrate on a narrowband system in this chapter to achieve a good
compromise between the performance and complexity.
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respectively, for BS l, and Pl is the number of NLOS paths arriving at BS l. The LOS AoA

is related to the user location pt through

θt,l (pt) = arctan
(
pyt − p̃yl
pxt − p̃xl

)
+ π · 1 (pxt < p̃xl ) , (5.2.2)

which is computed with respect to the x-axis and is anticlockwise, as shown in Fig. 5.1.

1 (E) is one if the logical expression E is true. Let p̃l,n = [p̃xl,n, p̃
y
l,n]T be the position of the

n-th antenna of BS l relative to the array’s gravity center. For arrays without mutual antenna

coupling and isotropic antennas, the array response vector al(θ) for the given AoA θ has the

following expression:

[al(θ)]n = exp

2πi
λ

p̃Tl,n

 cos (θ)

sin (θ)


 , (5.2.3)

where [al(θ)]n denotes the n-th element of al(θ) and λ denotes the wavelength of the uplink

propagation. In practice, for non-ideal arrays with mutual coupling and different antenna

gains, al(θ) is not computed mathematically but can be measured during the array calibration

process [90].

5.2.2 Off-Grid Basis for Localization

Directly recovering the user location from (5.2.1) through maximum likelihood (ML) or least

square (LS) is difficult because the resulting optimization problem is highly nonconvex and

suffers from a lot of local optima. Therefore, we introduce a grid-based model to locate a

source. By exploiting the sparsity inherent to the grid-based model, a D-VBI algorithm is

developed to obtain the maximum a posteriori (MAP) estimation of the user’s location. First,

we introduce a uniform grid of Q locations, denoted by A, for user location and a uniform

grid of Ml (Ml � Pl) angles, denoted by Θl, for AoAs of NLOS paths at BS l, which are

given by

A = {φ1, · · · ,φQ} ∈ X , (5.2.4)

and

Θl = {ϑ1, · · · , ϑMl
} ∈ (0, 2π],∀l ∈ {1, · · · , L}, (5.2.5)
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respectively. However, in practice, the true position pt and AoAs of NLOS paths {θit,l}
Pl
i=1,∀l

usually do not lie exactly on the grid point. In this case, there will be mismatches between the

true positions/AoAs and the grid points inA/{Θl}. To handle this issue, we adopt an off-grid

basis for the sparse representation. Specifically, if pt is located within the st-th grid cell (i.e.,

the square centered at the st-th grid location φst in A), we write pt as

pt = φst + κt,st , (5.2.6)

whereκt,st =
[
κxt,st , κ

y
t,st

]T
corresponds to the off-grid gap. Similarly, if ϑmi ,mi ∈ {1, · · · ,Ml}

is the nearest grid point to θit,l in Θl, we write θit,l as

θit,l = ϑmi + βt,l,mi , (5.2.7)

where βt,l,mi corresponds to the off-grid gap.

Note that with the off-grid basis, the model can significantly alleviate the location and di-

rection mismatch because there always exist some κt,st and βt,l,mi making (5.2.6) and (5.2.7)

hold exactly. The received signal yt,l in (5.2.1) can be rewritten using the off-grid basis as

yt,l = At,l (κt) xt,l + Bt,l (βt,l) zt,l + nt,l, (5.2.8)

where κt = [κt,1; · · · ;κt,Q], At,l (κt) = [al (θt,l (φ1 + κt,1)) , · · · , al (θt,l (φQ + κt,Q))],

and

κt,q =


pt − φst , q = st

[0, 0]T , otherwise
, (5.2.9)

βt,l = [βt,l,1, · · · , βt,l,Ml
]T , Bt,l (βt,l) = [al (ϑ1 + βt,l,1) , · · · , al (ϑMl

+ βt,l,Ml
)], and

βt,l,mi =


θit,l − ϑmi , i = 1, · · · , Pl

0, otherwise
. (5.2.10)

xt,l = [xt,l,1, · · · , xt,l,Q]T ∈ CQ×1 is called the sparse LOS channel vector, whose q-th ele-

ment xt,l,q denotes the complex gain of the LOS path from grid location φq + κt,q to BS l

at time slot t. zt,l = [zt,l,1, · · · , zt,l,Ml
]T ∈ CMl×1 is called the NLOS channel vector, whose

m-th element zt,l,m denotes the complex gain of the NLOS path arriving at BS l with angle
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ϑm + βt,l,m at time slot t. By definition, there is only one nonzero element in xt,l, ∀l, which

corresponds to αt,lut in (5.2.1). The index of the nonzero element is identical for all xt,l,∀l,

which corresponds to the coarse position of the user. Similarly, there are Pl nonzero ele-

ments in zt,l, which correspond to αit,lut, i = 1, · · · , Pl in (5.2.1). The non-zero indices of

zt,l correspond to the AoAs of the NLOS paths arriving at BS l.

The aggregate received signal from L BSs at time slot t can be written as

yt = At (κt) xt + Bt (βt) zt + nt, (5.2.11)

where yt = [yt,1; · · · ; yt,L] ∈ CN , N = ∑L
l=1Nl, xt = [xt,1; · · · ; xt,L] ∈ CLQ, zt =

[zt,1; · · · ; zt,L] ∈ CM , M = ∑L
l=1Ml, nt = [nt,1; · · · ; nt,L] ∈ CN , βt = [βt,1; · · · ;βt,L] ∈

RM , At (κt) = Diag (At,1 (κt) , · · · ,At,L (κt)) ∈ CN×LQ and

Bt (βt) = Diag (Bt,1 (βt,1) , · · · ,Bt,L (βt,L)) ∈ CN×M 3.

In the above sparse representation, the coarse position φst of the user is determined by the

index st of the nonzero element of xt,l,∀l. The user’s true position pt is jointly determined by

the coarse position φst and the corresponding position offset κt,st . We call st ∈ {1, · · · , Q}

the user’s location state. We denote the support vector of zt as vt = [vt,1,1, · · · , vt,L,ML
]T ∈

{0, 1}M×1, in which, vt,l,m = 1, if zt,l,m 6= 0; otherwise, vt,l,m = 0. In Section 5.4, we will

discuss how to jointly recover the user’s coarse position and refine the off-grid parameters to

learn the user’s exact location.

5.2.3 Remarks on the Major Assumptions

For analytical purpose, we have imposed two major assumptions as below.

Assumption 1 (LOS Observability). We should make sure that the LOS paths between the

user and the chosen BSs are not blocked or attenuated during the tracking process, and can

be received by the chosen BSs (Or in other words, there exist LOS paths between the user

and a few nearby BSs). Chosen BSs means the BSs selected to cooperatively track user’s

locations. This is usually true in practice for omni antennas and in outdoor transmission.

This also provides a BS selection criteria to apply the proposed tracking algorithm, i.e., the

BSs which are more likely in the LOS region of the user during tracking process will be chosen

to do the cooperative localization.
3In this chapter, we user At (κt) and Bt (βt) as the notation for measurement matrix.

106



x

y

1 2 3 Nc

Nc+1

(Nr-

1)Nc

+Nc

Nc+2 Nc+3
Nc+

Nc

(Nr-

1)Nc

+1

(Nr-

1)Nc

+2

Nc columns

Nr 

rows

NrNc=Q

x

y

1 2 3 Nc

Nc+1

(Nr-

1)Nc

+Nc

Nc+2 Nc+3
Nc+

Nc

(Nr-

1)Nc

+1

(Nr-

1)Nc

+2

Nc columns

Nr 

rows

NrNc=Q

Figure 5.2: Markov chain representation of the geographical area. In the next time slot, the user
either stays in the current grid cell or moves to one of the neighboring grid cells.

Assumption 2 (User Movement between Neighboring Cells). In the next time slot, we assume

the user either stays in the current grid cell, or moves to one of the neighboring grid cells, as

shown in Fig. 5.2. This is always satisfied in practice when the user’s speed is upper bounded

and the time slot duration is sufficiently small.

About these two assumptions, we would like to add several remarks.

Remark 5.1. For Assumption 1, even if its condition is not completely satisfied, the proposed

algorithm still can work well as verified in the simulations. In particular, the algorithm works

as long as there exist active LOS paths between the user and a few nearby BSs (e.g., 3 BSs

with active LOS paths are sufficient to achieve a good localization accuracy as illustrated in

Fig. 5.6 of the simulation). Hence, the algorithm is quite robust to the LOS blocking scenario.

Remark 5.2. For Assumption 2, if we consider 5m×5m grid size, the duration of one time

slot is τ̄ seconds, then this assumption can be satisfied when the user’s velocity is upbounded

as |vx| ≤ 10/τ̄ , |vy| ≤ 10/τ̄ , where vx (vy) is the velocity component at x (y) direction. When

τ̄ = 1ms, the velocity upper bound is 10km/s, which can be met in most cases.

Remark 5.3. These two assumptions are quite general and can be satisfied in many practical

scenarios. In this chapter, we concentrate on equal-polarized and omnidirectional antennas

for clarity. However, the proposed algorithm can be applied to more general scenarios. For

example, as long as the LOS paths are within the receive beamwidth of the antenna array of

the chosen BSs, the proposed algorithm can be readily applied to the directional antennas. For
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Figure 5.3: Temporal Markov group-sparse model for the LOS and NLOS channels.

non-equal-polarized antennas, the channel model is still a function of AoAs corresponding

to the LOS and NLOS paths [103]. By introducing the location grid and angle grid, the

whole problem can still be transformed into a compressive sensing problem, but with different

measurement matrices. We omit the details for conciseness. The proposed algorithm can be

directly used to solve it. Therefore, the proposed algorithm works for more general scenarios.

5.3 D-VBI Problem Formulation

The sparse channel representation in (5.2.11) lacks a probability model for xt and zt. Such

a probability model provides the foundation for efficient user location tracking in massive

MIMO systems. The Markov user mobility model will induce temporal correlation in the

support of massive MIMO channels. In addition, the cooperative localization of multiple

BSs based on the location grid induces a GS structure of the LOS channels at each time

slot. In order to jointly capture the PTC and GS of massive MIMO channels, we propose

a TMGS model in this section. Besides capturing the first-order sparsity structure of the

massive MIMO channels, another motivation for TMGS probability model is that it enables

closed-form update solution for the proposed D-VBI algorithm.

Fig. 5.3 illustrates the high level structures of the TMGS for the LOS channels (x1, · · · ,xT )

and NLOS channels (z1, · · · , zT ).
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5.3.1 Temporal-Markov-Group-Sparse Mobility Model for the LOS Chan-

nel

The TMGS prior of the LOS channels is a three-layer hierarchical prior. The first layer of

random variable is the user location state st,∀t, which represents the coarse position of the

user among the Q location grids. The second layer of random variable is precision vector

γt = [γt,1; · · · ;γt,L] ∈ RLQ,∀t with γt,l = [γt,l,1, · · · , γt,l,Q]T ∈ RQ, where γt,l,q represents

the precision (inverse of the variance) of xt,l,q. The third layer of random variable is the LOS

channel vector xt,∀t. For convenience, denote a time series of vectors {xt}Tt=1 as x1:T (same

for γ1:T , s1:T , z1:T , λ1:T ,v1:T ). Then the TMGS prior distribution (joint distribution of x1:T ,

γ1:T and s1:T ) is given by

p (x1:T ,γ1:T , s1:T ) =
T∏
t=1

p (xt |γt )︸ ︷︷ ︸
LOS Channels

p (γt |st )︸ ︷︷ ︸
Precisions

p (s1:T )︸ ︷︷ ︸
Location States

, (5.3.1)

where the location states s1:T form a Markov chain, as detailed in Subsection 5.3.1.1, and

the conditional priors of the LOS channel precisions and LOS channels form a group sparse

model, as detailed in Subsection 5.3.1.2.

5.3.1.1 Mobility Model for User Location States

The Markov model (MM) is considered for user movement prediction in [93]. Based on the

Assumption 2, we can use a Markov chain to model the user’s mobility, given by

p (s1:T ) = p(s1)
T∏
t=2

p(st |st−1 ), (5.3.2)

where p(st |st−1 ) is characterized by the transition probability matrix (TPM) Gt = {gt,j,i} ∈

RQ×Q, in which gt,j,i = P (st+1 = j |st = i) is the transition probability between state i and

state j, 1 ≤ i, j ≤ Q. Since the movements are only between neighboring states, only the

neighbor and self transition probabilities are non-zero. Assume the Q grid cells could be

divided into Nr rows and Nc columns, we index the grid cells along the rows, as shown in

Fig. 5.2. For transitions from state i, i.e., i = Nc + 2 in Fig. 5.2, the indices of (potentially)

nonzero elements of Gt[:, i] are given by {1, 2, 3, Nc + 1, Nc + 2, Nc + 3, 2Nc + 1, 2Nc +

2, 2Nc + 3}. In practice, the prior distribution p(s1) can be obtained via the other localization

technologies (such as GPS), and Gt could be dynamically updated according to the training
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data to improve the robustness w.r.t. the inaccurate prior information on Gt.

5.3.1.2 Group Sparse Model for LOS Channels

To allow the flexibility to model local characteristics of the signal, a non-stationary Gaussian

prior distribution with a distinct precision γt,l,q for each element xt,l,q of xt is considered, i.e.,

p (xt|γt) =
Q∏
q=1

L∏
l=1
CN

(
xt,l,q; 0, γ−1

t,l,q

)
. (5.3.3)

The precisions γt,l,q are further constrained by treating them as random variables and impos-

ing a Gamma prior distribution to them. The Gamma prior is selected because it is conju-

gate to the Gaussian, hence the associated Bayesian inference can be performed in closed

form [28, 99]. The conditional prior of precision vector γt is given by

p (γt|st) =
L∏
l=1

Q∏
q=1

Γ (γt,l,q; al, bl)1(st=q) Γ
(
γt,l,q; ā, b̄

)1(st 6=q)
, (5.3.4)

where Γ (ρ; a, b) is a Gamma hyper-prior with shape parameter a and rate parameter b.

The priors in (5.3.3) and (5.3.4) can be used to capture the group-sparsity of LOS chan-

nels, as explained below. When st = q, there is an active LOS path from the q-th grid cell

to each BS. In this case, the shape and rate parameter al, bl of the precision γt,l,q should be

chosen such that al
bl

= E [γt,l,q] = Θ(1),∀q, l, since the variance γ−1
t,l,q of xt,l,q is Θ(1) when

it is active. When st 6= q, there is no active LOS path from the q-th grid cell to each BS. In

this case, the shape and rate parameter ā, b̄ of the precision γt,l,q should be chosen such that
ā
b̄

= E [γt,l,q] � 1, ∀q, l, since the variance γ−1
t,l,q of xt,l,q is close to zero when it is inactive.

Note that the channel energies of the LOS channels {xt,l}Ll=1 associated with different BSs

all concentrate on the same index st. Therefore, the LOS channel vectors xt can be separated

into Q blocks with block size L, i.e., the q-th block is constituted by [xt,1,q, · · · , xt,L,q]. For

blocks satisfying st = q, the conditional priors in (5.3.4) assign smaller precisions to make

the block elements deviate from zero. For blocks satisfying st 6= q, the conditional priors in

(5.3.4) assign larger precisions to make the block elements concentrate on zero. Meanwhile,

we use different precisions within each block to capture the different path gains for different

BSs.
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5.3.2 Temporal-Markov-Group-Sparse Mobility Model for the NLOS

Channel

The TMGS prior of NLOS channels is a three-layer hierarchical prior. The first layer of ran-

dom variable is support vector vt = [vt,1; · · · ; vt,L] ∈ RM , ∀twith vt,l = [vt,l,1, · · · , vt,l,Ml
]T ∈

RMl , where vt,l,m ∈ {0, 1} represents whether there is an active NLOS path arriving at the

BS l from the m-th angle grid. The second layer of random variable is precision vector

λt = [λt,1; · · · ;λt,L] ∈ RM ,∀t with λt,l = [λt,l,1, · · · , λt,l,Ml
]T ∈ RMl , where λt,l,m repre-

sents the precision (inverse of the variance) of zt,l,m. The third layer of random variable is the

NLOS channel vectors zt,∀t. Then the TMGS prior distribution (joint distribution of z1:T ,

λ1:T and v1:T ) is given by

p (z1:T ,λ1:T ,v1:T ) =
T∏
t=1

p (zt |λt )︸ ︷︷ ︸
NLOS Channels

p (λt |vt )︸ ︷︷ ︸
Precisions

p (v1:T )︸ ︷︷ ︸
SupportVectors

, (5.3.5)

where the elements of vt across time form independent Markov chains, which will be elab-

orated in Subsection 5.3.2.1, and the conditional priors of the NLOS channel precisions and

the NLOS channels form a sparse model, which will be elaborated in Subsection 5.3.2.2.

5.3.2.1 Markov Model for Support Vector

Due to the MM user mobility model and the slowly changing propagation environment, the

support vector vt changes slowly over time, i.e., if vt,l,m = 1, there is a high probability that

vt+1,l,m = 1. Such temporal correlation of support vector vt could be modeled by an MM

process [66] as follows:

p (v1:T ) =
L∏
l=1

Ml∏
m=1

(
p (v1,l,m)

T∏
t=2

p (vt,l,m |vt−1,l,m )
)
, (5.3.6)

with the transition probability given by

p (vt,l,m |vt−1,l,m ) =


ρ
vt,l,m
01 (1− ρ01)1−vt,l,m vt−1,l,m = 0

ρ
1−vt,l,m
10 (1− ρ10)vt,l,m vt−1,l,m = 1

, (5.3.7)

where ρ01 = p (vt,l,m = 1 |vt−1,l,m = 0) and ρ10 = p (vt,l,m = 0 |vt−1,l,m = 1). The initial dis-

tribution p (v1,l,m) is set to be the steady state distribution, i.e., p (v1,l,m = 1) = ρ01
ρ01+ρ10

,∀l,m.
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Note that the Markov parameters {ρ01, ρ10} characterize the degree of temporal correla-

tion of the NLOS paths. Specifically, smaller ρ01 and ρ10 lead to highly correlated supports

across time, which means the propagation environment between the user and BSs is chang-

ing slowly. Larger ρ01 and ρ10 can allow support to change substantially across time, which

means the propagation environment is changing significantly. As such, the MM for the NLOS

support vectors can be used to model various channel realizations in practice. We consider

the steadily changing propagation environment between user and BSs. Therefore, the tran-

sition probabilities ρ01 and ρ10 are (almost) static during the tracking process that we are

interested in. The statistic parameters {ρ01, ρ10} could be automatically learned based on the

EM framework during the recovery process [66].

5.3.2.2 Sparse Model for NLOS Channels

Similar to LOS channels, we assign a non-stationary Gaussian prior distribution with a dis-

tinct precision λt,l,m for each entry of zt as follows:

p (zt |λt ) =
L∏
l=1

Ml∏
m=1
CN

(
zt,l,m; 0, λ−1

t,l,m

)
. (5.3.8)

The conditional prior of precision vector λt is given by

p (λt |vt ) =
∏
l,m

Γ
(
λt,l,m; aNl , bNl

)vt,l,m Γ
(
λt,l,m; ā, b̄

)1−vt,l,m
. (5.3.9)

The priors in (5.3.8) and (5.3.9) can be used to capture the sparsity of NLOS channels, as

explained below. When vt,l,m = 1, there is an active NLOS path from the m-th angle grid

arriving at BS l. In this case, aNl /b
N
l = E [λt,l,m] = Θ(1),∀l,m, since the variance λ−1

t,l,m of

zt,l,m is Θ(1) if it is active. When vt,l,m = 0, there is no active NLOS path from the m-th

angle grid arriving at BS l. In this case, ā
b̄

= E [λt,l,m]� 1,∀l,m, since the variance λ−1
t,l,m of

zt,l,m is close to zero if it is inactive.

Remark 5.4. Note that the Gaussian assumption on the path coefficients in (5.3.3) and (5.3.8)

is just for the convenience of inducing sparsity through the hierarchical model specified

in Bayesian-inference-based algorithm, and this approximation doesn’t sacrifice the perfor-

mance much as validated in the simulations.
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5.3.3 D-VBI Formulation with TMGS Prior

Under the assumption of the complex Gaussian noise, we have

p (yt,l |xt,l, zt,l, νt,l;κt,βt,l ) =CN
(
yt,l; At,l (κt) xt,l + Bt,l (βt,l) zt,l, ν−1

t,l I
)
, (5.3.10)

where νt,l = σ−2
t,l represents the noise precision for BS l. Since νt,l is usually unknown, we

model it as a Gamma hyper-prior

p(νt,l) = Γ(νt,l; a, b), (5.3.11)

where we set a, b → 0 as in [27]. Then the joint prior of νt = [νt,1, · · · , νt,L] is given by

p (νt) = ∏L
l=1 p(νt,l).

Denote the complete hidden variables as ht = {xt, zt,γt,λt, st,vt,νt}. For convenience,

we use ht,n to denote an individual variable in ht. Let H = {n|∀ht,n ∈ ht}. In order to

recursively track the user’s location pt (1 ≤ t ≤ T ), at each time slot, our primary goal is

to estimate the user location state (coarse location) st and the location grid offset κt given

the observations up to the current time slot, y1:t in model (5.2.11). In particular, the offset

parameters κ1:t,β1:t are obtained by maximizing the likelihood function as follows:

[
κ̂1:t, β̂1:t

]
= arg max

κ1:t,β1:t
ln p(y1:t;κ1:t,β1:t)

= arg max
κ1:t,β1:t

ln
∫
p (h1:t,y1:t;κ1:t,β1:t) dh1:t. (5.3.12)

Then, for given estimates of offset parameters κ1:t = κ̂1:t,β1:t = β̂1:t, we aim at calculating

the marginal posteriors p (st |y1:t;κ1:t,β1:t ) by performing the Bayesian inference for st, then

the estimation ŝt of st could be given by the MAP probability estimate as follows:

ŝt = arg max
st∈{1,··· ,Q}

p (st |y1:t;κ1:t,β1:t ) . (5.3.13)
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p (st |y1:t;κ1:t,β1:t ) can be calculated through

p (st |y1:t;κ1:t,β1:t ) ∝
∫
p (h1:t,y1:t;κ1:t,β1:t) d (h1:t)−st

∝
∫ t∏

τ=1
p (yτ |xτ , zτ ,ντ ;κτ ,βτ ) p (ντ ) p (xτ |γτ ) p (γτ |sτ ) p (sτ |sτ−1 )

× p (zτ |λτ ) p (λτ |vτ ) p (vτ |vτ−1 ) d (h1:t)−st , (5.3.14)

where p(s1 |s0 ) = p(s1) and p (v1 |v0 ) = p (v1), ∝ denotes the left is proportional to the

right, and (h1:t)−st denotes the vector collections {hτ}tτ=1 except for the element st. Finally,

the user’s location estimation p̂t at time slot t can be given by

p̂t = φŝt + κ̂t,ŝt . (5.3.15)

Challenge 1: It is very challenging to calculate the exact posterior in (5.3.13) and the likeli-

hood function in (5.3.12), because it is hard to calculate the closed form of the integration in

(5.3.14) due to the complicated priors of the hidden variables and the correlations between

hidden variables.

Challenge 2: Moreover, the objective in (5.3.12) is a high-dimensional non-convex function.

It is very difficult to directly use the optimization method (i.e., gradient method) to solve

problem (5.3.12).

To overcome these challenges, we propose a D-VBI algorithm to find the approxima-

tion of the posterior distribution in (5.3.13) and the approximate stationary point of problem

(5.3.12).

5.4 D-VBI Algorithm for User Location Tracking

In the proposed D-VBI algorithm, the BSs first send the received signals yt,l,∀l to the cloud.

Then the cloud runs the D-VBI algorithm to track st along with the off-grid parameters κt

recursively, based on the noisy measurement and the messages passed from the last time slot.

5.4.1 Outline of Dynamic Variational Bayesian Inference

In (5.3.12), we need to jointly optimize κ1:t,β1:t based on all the observations y1:t. One

possible solution is to store all the available observations y1:t and perform a joint optimization
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of κ1:t,β1:t at each time t. However, the memory cost and computational complexity of such

a brute-force solution would become unacceptable for large t. To address this challenge, we

propose a D-VBI algorithm, which is based on problem decomposition and approximation.

Specifically,

1. Problem Decomposition: We first decompose the joint optimization problem (5.3.12)

into subproblems based on Lemma 5.1, such that the subproblem at time t only involves

the optimization of κt,βt, and q (ht) (q(ht) is a PDF of hidden variables ht) based on

the current observation yt and the posterior p
(
st−1,vt−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
, where

κ?1:t and β?1:t denote the optimal solution of (5.3.12).

2. Problem Approximation: Then we obtain an approximate subproblem for time slot t

by adding an additional factorized constraint on q (ht) and replacing the exact posterior

p
(
st−1,vt−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
with an approximate posterior that can be obtained

from the messages passed from the previous time slot.

3. inexact Block Coordinate Descent: Finally, we propose an inexact block coordinate

descent (BCD) algorithm to find a stationary solution (κ∗t ,β∗t , q∗ (ht)) of the approxi-

mate subproblem for time slot t. Then κ∗t ,β
∗
t is an approximation of κ?t ,β

?
t and q∗ (ht)

is the approximation of the exact posterior p (ht |y1:t;κ?1:t,β
?
1:t ). At last, the messages

{q∗ (st) , q∗ (vt)} are passed to the next time slot t+ 1.

In the following, we will elaborate the problem decomposition and approximation in Section

5.4.2, and the inexact BCD algorithm in Section 5.4.3.

5.4.2 Problem Decomposition and Approximation

The problem decomposition is based on the following Lemma.

Lemma 5.1 (Problem Decomposition). Let κ?1:t,β
?
1:t denote the optimal solution of (5.3.12).

Consider the following optimization problem at time t

max
q(ht),κt,βt

∫
q (ht) ln

p
(
ht,y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
q (ht)

dht, (5.4.1)
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where

p
(
ht,y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
∝p (yt |xt, zt,νt;κt,βt ) p (νt) p (xt |γt ) p (γt |st ) p (zt |λt ) p (λt |vt )

×
∑

st−1,vt−1

p (st |st−1 ) p (vt |vt−1 ) p
(
st−1,vt−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
. (5.4.2)

When t = 1, the optimization problem (5.4.1) is reduced to

max
q(h1),κ1,β1

∫
q (h1) ln

(
p (h1,y1;κ1,β1)

q (h1)

)
dh1. (5.4.3)

Then the optimal solutions of problem (5.4.1), i.e., κ?t ,β
?
t and q? (ht) = p (ht |y1:t;κ?1:t,β

?
1:t )

are the optimal solutions of original problem (5.3.12).

Please refer to Appendix 5.7.1 for the proof.

According to Lemma 5.1, both the optimal parameter κ?t ,β
?
t for the original problem

(5.3.12), and the associated posterior p (ht |y1:t;κ?1:t,β
?
1:t ) can be obtained by solving Sub-

problem (5.4.1). Note that Subproblem (5.4.1) only depends on the previous observations

y1:t−1 and previous parametersκ?1:t−1,β
?
1:t−1 via the posterior p

(
st−1,vt−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
,

as shown in (5.4.2). Therefore, if we can find a good approximation for the posterior

p
(
st−1,vt−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
based on the messages from the previous time slot, we

can get rid of the intractable joint optimization of κ1:t,β1:t. Specifically, we have the follow-

ing approximation

p
(
st−1,vt−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
≈ q* (st−1) q∗ (vt−1) , (5.4.4)

where q∗ (st−1) ≈ p
(
st−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
and q∗ (vt−1) ≈ p

(
vt−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
are the approximate posteriors obtained from the previous time slot t − 1 by solving the ap-

proximate subproblem A in (5.4.5) for time t−1. By replacing p
(
st−1,vt−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
with its approximation q∗ (st−1) q∗ (vt−1) and adding an additional factorized constraint on
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q (ht), the optimization problem in (5.4.1) could be simplified as

A : max
q(ht),κt,βt

∫
q (ht) ln

(
p̂ (yt,ht;κt,βt)

q (ht)

)
dht︸ ︷︷ ︸

Ut(qt,1:|H|,κt,βt)

, (5.4.5)

s.t. q (ht) =
∏
n∈H

q (ht,n) . (5.4.6)

We denote q (ht,n) as qt,n,∀n ∈ H, and qt,1:|H| =
(
qt,1, · · · , qt,|H|

)
. In (5.4.5), p̂ (yt,ht;κt,βt)

is given by

p̂ (yt,ht;κt,βt)

=p (yt |xt, zt,νt;κt,βt ) p (νt) p (xt |γt ) p (γt |st ) p (zt |λt ) p (λt |vt ) p̂ (st) p̂ (vt) , (5.4.7)

in which the approximate priors of st and vt are given by

p̂ (st) =
∑
st−1

p (st |st−1 ) q∗ (st−1) , (5.4.8)

p̂ (vt) =
∑
vt−1

p (vt |vt−1 ) q∗ (vt−1) . (5.4.9)

Since the objective Ut in Problem A involves both functions qt,n’s and variables κt,βt,

it is difficult to find the optimal solution. We adopt an inexact BCD algorithm to find a

stationary solution instead. Specifically, a stationary solution for Problem A is defined as

follows.

Definition 5.1 (Stationary Solution). (q∗ (ht) ,κ∗t ,β∗t ) is called a stationary solution of Prob-

lem A if

q∗t,n = arg max
qt,n
Ut
(
qt,n, q

∗
t,−n,κ

∗
t ,β

∗
t

)
, n ∈ H

and (κ∗t ,β∗t ) is a stationary point of maxκt,βt Ut
(
q∗t,1:|H|,κt,βt

)
,where q∗t,−n =

(
q∗t,1:n−1, q

∗
t,n+1:|H|

)
,

and q∗ (ht) = ∏
n∈H q

∗
t,n.

117



5.4.3 Inexact Block Coordinated Descent

The inexact BCD optimizes each function/variable in an alternating way. Specifically, in the

i-th iteration, we update qt,n’s as

q
(i+1)
t,n = arg max

qt,n
Ut
(
qt,n, q

(i)
t,−n,κ

(i)
t ,β

(i)
t

)
, n ∈ H, (5.4.10)

where (·)(i) stands for the i-th iteration, and q(i)
t,−n =

(
q

(i+1)
t,1:n−1, q

(i)
t,n+1:|H|

)
. The update formulas

for q(i+1)
t,n ’s are summarized in the following lemma.

Lemma 5.2 (Solution of (5.4.10)). Problem (5.4.10) has a unique solution given by [28] :

ln q(i+1)
t,n �


〈
ln p

(
yt,ht;κ(i)

t ,β
(i)
t

)〉∏
q
(i)
t,−n

, t = 1〈
ln p̂

(
yt,ht;κ(i)

t ,β
(i)
t

)〉∏
q
(i)
t,−n

, t > 1
(5.4.11)

for n ∈ H, where 〈f (x)〉q(x) =
∫
f (x) q (x) dx.

On the other hand, we use the gradient method to update κt,βt as

κ
(i+1)
t = κ

(i)
t +∆κt · ξ

(i+1)
κ

(i)
t

, (5.4.12)

β
(i+1)
t = β

(i)
t +∆βt · ξ

(i+1)
β

(i)
t

, (5.4.13)

where ξ(i+1)
κ

(i)
t

and ξ(i+1)
β

(i)
t

are the derivatives of the objective function Ut w.r.t. κt and βt at

point
(
q(i+1) (ht) ,κ(i)

t ,β
(i)
t

)
and

(
q(i+1) (ht) ,κ(i+1)

t ,β
(i)
t

)
, respectively, and ∆κt and ∆βt

are the stepsizes that can be determined by the Armijo rule [104]. Alternatively, we may use

a fixed stepsize, as mentioned in [27], to reduce the computational complexity. The detailed

expressions of ξ(i+1)
κ

(i)
t

and ξ(i+1)
β

(i)
t

are given in Appendix 5.7.2.

The above update rules guarantee that the objective function Ut is non-decreasing and the

inexact BCD algorithm will converge to stationary points.

Lemma 5.3 (Convergence of Inexact BCD). The update rules in (5.4.11), (5.4.12) and (5.4.13)

give non-decreasing sequences Ut
(
q

(i)
t,1:|H|,κ

(i)
t ,β

(i)
t

)
for i = 1, 2, 3, · · · . Every limiting point

of the iterates
{
q

(i)
t,1:|H|,κ

(i)
t ,β

(i)
t

}
generated by the inexact BCD algorithm is a stationary

solution of Problem A in (5.4.5).

Please refer to Appendix 5.7.3 for the proof.
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5.4.4 Closed-Form Update for the Posterioris qt,n’s

Based on Lemma 5.2, the update equations of q (ht,n) ,∀n ∈ H are given in the following.

For conciseness, we omit the iteration index i. The detailed derivations can be found in Ap-

pendix 5.7.4. Note that 〈·〉ht,n is equivalent to 〈·〉qt,n , 〈f (ht,n)〉 is equivalent to 〈f (ht,n)〉qt,n .

5.4.4.1 Approximate prior of st and vt

Let q∗ (st−1) = ∑Q
q=1 π̃t−1,qδ (st−1 − q) and

q∗ (vt−1,l,m) = ζ̃t−1,l,mδ (vt−1,l,m − 1) +
(
1− ζ̃t−1,l,m

)
δ (vt−1,l,m) ,∀l,m

denote the messages passed from the previous time slot t−1, where the posterior probabilities

π̃t−1,q,∀q and ζ̃t−1,l,m,∀l,m can be calculated through (5.4.22) and (5.4.24) at time slot t−1.

Let πt,q and ζt,l,m denote the approximate prior probability of p(st = q) and p(vt,l,m = 1).

According to (5.4.8) and (5.4.9), we have

p̂ (st) =
Q∑
q=1

πt,qδ (st − q) , (5.4.14)

p̂ (vt) =
∏
l,m

ζt,l,mδ (vt,l,m − 1) + (1− ζt,l,m) δ (vt,l,m) , (5.4.15)

where πt,q = Gt−1[q, :]π̃t−1 and ζt,l,m = ζ̃t−1,l,m (1− ρ10) +
(
1− ζ̃t−1,l,m

)
ρ01.

5.4.4.2 Update for νt

For given q(xt) and q(zt), q (νt) can be derived as

q (νt) =
L∏
l=1

q(νt,l) =
L∏
l=1

Γ (νt,l; ct,l, dt,l) , (5.4.16)

where ct,l = Nl + a, dt,l =
〈
‖yt,l −At,l (κt) xt,l −Bt,l (βt,l) zt,l‖2

〉
xt,l,zt,l

+ b.

5.4.4.3 Update for xt

For given q(νt), q(zt) and q(γt), q (xt) can be derived as

q(xt) =
L∏
l=1
CN

(
xt,l;µxt,l,Σx

t,l

)
, (5.4.17)
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where

Σx
t,l =

(
〈νt,l〉At,l (κt)H At,l (κt) + diag 〈γt,l〉

)−1
,

µxt,l = 〈νt,l〉Σx
t,lAt,l (κt)H (yt,l −Bt,l (βt,l) 〈zt,l〉) .

5.4.4.4 Update for zt

For given q(νt), q(xt) and q(λt), q(zt) can be derived as

q(zt) =
L∏
l=1
CN

(
zt,l;µzt,l,Σz

t,l

)
, (5.4.18)

where

Σz
t,l =

(
〈νt,l〉Bt,l (βt,l)H Bt,l (βt,l) + diag 〈λt,l〉

)−1
,

µzt,l = 〈νt,l〉Σz
t,lBt,l (βt,l)H (yt,l −At,l (κt) 〈xt,l〉) .

5.4.4.5 Update for γt and λt

For given q(st) and q(xt), q(γt) can be derived as

q (γt) =
L∏
l=1

Q∏
q=1

Γ
(
γt,l,q; ãt,l,q, b̃t,l,q

)
, (5.4.19)

where ãt,l,q = 〈1 (st = q)〉 al + 〈1 (st 6= q)〉 ā + 1, b̃t,l,q = 〈1 (st = q)〉 bl + 〈1 (st 6= q)〉 b̄ +〈
|xt,l,q|2

〉
.

For given q(vt) and q(zt), q(λt) can be derived as

q (λt) =
L∏
l=1

Ml∏
m=1

Γ
(
λt,l,m; ât,l,m, b̂t,l,m

)
, (5.4.20)

where ât,l,m = 〈vt,l,m〉 aNl + 〈1− vt,l,m〉 ā+1, b̂t,l,m = 〈vt,l,m〉 bNl + 〈1− vt,l,m〉 b̄+
〈
|zt,l,m|2

〉
.

5.4.4.6 Update for st and vt

For given q(γt), q(st) can be derived as

q (st) =
Q∑
q=1

π̃t,qδ (st − q) . (5.4.21)

120



π̃t,q is given by

π̃t,q = 1
C1
πt,qe

∑L

l=1 χt,l,q , (5.4.22)

where χt,l,q = (al − 1) 〈ln γt,l,q〉 − bl 〈γt,l,q〉 + (ā− 1)∑q′ 6=q 〈ln γt,l,q′〉 − b̄
∑
q′ 6=q 〈γt,l,q′〉, C1

is the normalization constant to make
∑Q
q=1 π̃t,q = 1, given by C1 = ∑Q

q=1 πt,qe
∑L

l=1 χt,l,q .

For given q(λt), q(vt) can be derived as

q (vt) =
∏
l,m

ζ̃t,l,mδ (vt,l,m − 1) +
(
1− ζ̃t,l,m

)
δ (vt,l,m) , (5.4.23)

where

ζ̃t,l,m = 1
C2
ζt,l,m

(
bNl
)aNl

Γ (aNl ) e
(aNl −1)〈lnλt,l,m〉−bNl 〈λt,l,m〉, (5.4.24)

and C2 is the normalization constant, given by C2 = ζt,l,m
(bNl )a

N
l

Γ(aNl ) e
(aNl −1)〈lnλt,l,m〉−bNl 〈λt,l,m〉+

(1− ζt,l,m) (b̄)ā
Γ(ā) e

(ā−1)〈lnλt,l,m〉−b̄〈λt,l,m〉.

The involved expectations are given as follows for ∀q, l,m:

〈
‖yt,l −At,l (κt) xt,l −Bt,l (βt,l) zt,l‖2

〉
xt,l,zt,l

=
∥∥∥yt,l −At,l (κt)µxt,l −Bt,l (βt,l)µzt,l

∥∥∥2

+ tr
(
At,l (κt) Σx

t,lAt,l (κt)H
)

+ tr
(
Bt,l (βt,l) Σz

t,lBt,l (βt,l)H
)
, (5.4.25)

〈νt,l〉 = ct,l
dt,l

, 〈γt,l,q〉 = ãt,l,q

b̃t,l,q
, 〈λt,l,m〉 = ât,l,m

b̂t,l,m
, (5.4.26)

〈1 (st = q)〉 = π̃t,q, 〈1 (st 6= q)〉 = 1− π̃t,q, (5.4.27)

〈vt,l,m〉 = ζ̃t,l,m, 〈1− vt,l,m〉 = 1− ζ̃t,l,m, (5.4.28)〈
|xt,l,q|2

〉
=
∣∣∣µxt,l,q∣∣∣2 + Σx

t,l,q,q, 〈xt,l〉 = µxt,l, (5.4.29)〈
|zt,l,m|2

〉
=
∣∣∣µzt,l,m∣∣∣2 + Σz

t,l,m,m, 〈zt,l〉 = µzt,l, (5.4.30)

〈ln γt,l,q〉 = ψ (ãt,l,q)− ln
(
b̃t,l,q

)
, 〈ln λt,l,m〉 = ψ (ât,l,m)− ln

(
b̂t,l,m

)
. (5.4.31)

where ψ (x) = d
dx

ln (Γ (x)) is the digamma function, µxt,l,q (µzt,l,m) is the q-th (m-th) element

of µxt,l (µzt,l), and Σx
t,l,q,q (Σz

t,l,m,m) is the q-th (m-th) diagonal element of Σx
t,l (Σz

t,l).
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Algorithm 5.1 D-VBI for user location tracking

1: Input: {y1, · · · ,yT }, At (0), Bt(0), ∀t, and {al, bl, aNl , bNl },ā, b̄,a, b.
2: Output: {p̂1, · · · , p̂T }.
3: for t = 1, · · · , T do
4: Update p̂ (st) and p̂ (vt) using (5.4.14)-(5.4.15).
5: Initialize: i = 0, κ(0)

t = 0,β(0)
t = 0, ã(0)

t,l,q = πt,qal+ (1−πt,q)ā, b̃(0)
t,l,q = πt,qbl+ (1−πt,q)b̄,

â
(0)
t,l,m = ζt,l,ma

N
l + (1− ζt,l,m)ā, b̂(0)

t,l,m = ζt,l,mb
N
l + (1− ζt,l,m)b̄, π̃(0)

t,q = πt,q, ζ̃
(0)
t,l,m = ζt,l,m,

Σ̃t,l =
(
ÃH
t,lÃt,l + diag 〈Λt,l〉(0)

)−1
,
[
Σx(0)
t,l ,Σz(0)

t,l

]
= diagblock(Σ̃t,l),

[
µ
x(0)
t,l ;µz(0)

t,l

]
=

Σ̃t,lÃH
t,lyt,l, in which Ãt,l = [At,l (0) ,Bt,l (0)], Λt,l = [γt,l;λt,l],∀l, q,m.

6: Calculate the expectations about xt, zt, st,vt,γt,λt using (5.4.25)-(5.4.31).
7: while not converge do
8: %Approximate Posterior Distributions:
9: Update q(i+1) (νt) using (5.4.16) and the related expectation using (5.4.26).

10: Update q(i+1) (xt) using (5.4.17) and the related expectations using (5.4.29).
11: Update q(i+1) (zt) using (5.4.18) and the related expectations using (5.4.25) and (5.4.30).
12: Update q(i+1) (γt), q(i+1) (λt) using (5.4.19)-(5.4.20) and the related expectations using

(5.4.26) and (5.4.31).
13: Update q(i+1) (st), q(i+1) (vt) using (5.4.21)-(5.4.24) and the related expectations using

(5.4.27) and (5.4.28).
14: %Off-grid Parameters Update:
15: Update κ(i+1)

t and β(i+1)
t according to (5.4.12) and (5.4.13).

16: i = i+ 1.
17: end while
18: Set q∗ (st) = q(i) (st), q∗ (vt) = qi (vt), κ∗t = κ

(i)
t . Pass q∗ (st) and q∗ (vt) to t+ 1.

19: Estimate ŝt according to ŝt = arg maxst q∗ (st), and κ̂t = κ∗t , then the position estimation p̂t
is given by (5.3.15).

20: end for

5.4.5 D-VBI Algorithm Realization

The proposed overall D-VBI algorithm can be summarized as in Algorithm 5.1 and Fig. 5.4.

It is shown in [27] and [28] that the Bayesian inference algorithm is not sensitive to the

prior parameters, such as {al, bl, aNl , bNl } and ā, b̄. When we have prior information about

the approximate path gain between the user and BSs, we could set bl/al and bNl /a
N
l to be

the approximate path gain. Otherwise, we could simply set al = bl = aNl = bNl = ā = 1,

b̄ = 0.001.

5.4.6 Algorithm Complexity

We discuss the computational complexity of proposed algorithm. Following the overall flow

of the proposed D-VBI algorithm in Fig. 5.4, the number of mathematical operations involved

at each step is summarized in the Table 5.1. We focus on the complicated mathematical oper-

ations, such as multiplications and divisions. Note that the updates of q(xt) and q(zt) require
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Approximate prior of 

Approximate 
posterior passed from 
the (t-1)-th time slot
∗ ∗

Posterior update for variables

Location estimation at the t-th time slot 

Off-grid parameters update 

Approximate 
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∗ ∗
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the t-th time slot

,

,,
,

∗∗

Figure 5.4: The overall flow of the proposed D-VBI algorithm

Number of
mathematical

operations
Multiplication Division

p̂(st) Q2

p̂(vt) 2M
q(νt)

∑
l [2NlQ+NlQ

2 + 2NlMl +NlM
2
l ] +N

q(xt) 2QL+ 2NQ+ 2∑lN
2
l Q+ 2Q2N +∑

lNlMl
QL+

L+O (∑lN
3
l )

q(zt) 2M + 2∑l (NlMl +N2
l Ml +M2

l Nl) +NQ M +O (∑lN
3
l )

q(γt) 5LQ
q(λt) 5M
q(st) 5Q LQ+Q
q(vt) 8M 2M + L+ 1
κt 2Q+ 5LQ+ 5QN 2LQ
βt 2M +∑

l 5NlMl

Table 5.1: Number of mathematical operations involved in the D-VBI algorithm

the matrix inversion. Assuming the arithmetic with individual elements has complexityO(1),

the computational complexity of matrix inversion for n× n matrix is O(n3). We use matrix

inversion lemma to reduce the complexity of computing Σx
t,l and Σz

t,l. From Table 5.1, it can

be seen that the main computational burden is updating q(νt), q(xt) and q(zt). Because their

updates require the most number of the mathematical operations (cubic order) compared to

the updates of other steps.

5.5 Simulation Results

In this section, we verify the location tracking performance of the proposed algorithm in

massive MIMO systems. The proposed algorithm is compared with the following baselines:
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• Baseline 1 (VBI (i.i.d.) [28]): The VBI algorithm assumes i.i.d sparse channel prior at

each time slot.

• Baseline 2 (VBI (Group-Sparse) [28]): The VBI algorithm assumes group sparse LOS

channel prior and i.i.d sparse NLOS channel prior at each time slot.

• Baseline 3 (DiSouL [90]): The LOS and NLOS channels are recovered through `2,1

norm minimization at each time slot independently and the grid is refined around the

estimated location and angles adaptively.

• Baseline 4 (ML Classifier [86]): This is a fingerprinting-based algorithm, which ex-

ploits changes in statistics of the sparse beamspace channel matrix as a function of the

user position. BS1 in Fig. 5.5 is chosen as the operation BS. In each grid cell, we

uniformly pick Nsp = 1000 sample user positions and compute the average covariance

matrix for this cell.

• Baseline 5 (D-VBI (without off-grid)): The D-VBI algorithm proposed in this paper

is used to track user’s location by exploiting the TMGS prior without considering the

off-grid effect, i.e., the off-grid parameters κt and βt are set to be zero.

We consider the user is moving within an area X with size 50 × 50 m, which is split

into Q = 100 grid cells, each with size 5 × 5 m in Section 5.5.1 and 5.5.2. Assume

the origin of the coordinate system is in the middle of the area, four BSs are located at

[−50 m, 50 m],[50 m, 50 m],[−50 m,−50 m],[−50 m, 50 m] respectively. We consider direc-

tional and non-directional user movements, as shown in Fig. 5.5. Two scatterers uniformly

located are considered. The uniform linear array (ULA) and uniform circular array (UCA)

with λ
2 inter antenna spacing are considered. The transmit power is PT = |ut|2. The

channel gain for LOS path is computed as αt,l = 10−L(dt,l)/20e
j2πfcdt,l

c , where L(dt,l) =

20 log10

(
4πfc
c

)
+ 10n log10

(
dt,l
1m

)
is the pathloss at distance dt,l in meters, fc is the carrier

frequency, c is the light speed, n is the pathloss exponent. The channel gain for NLOS path

is computed as αit,l = 10−L(dt,l)/20
√
X i
t,le

jφit,l , where X i
t,l is the shadowing coefficient and the

phase φit,l is modeled as φit,l ∼ U (0, 2π) . We adopt the standard cellular channel parameters

in 3GPP [102] as shown in Table 5.2.

We use root-mean-square error (RMSE) as a performance metric for the tracking schemes,

which is defined as RMSE =
√

1
KT

∑K
k=1

∑T
t=1

∥∥∥p̂kt − pt
∥∥∥2

, where p̂kt denotes the position
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Parameters Value
carrier frequency fc 7 GHz

Path loss exponent (PLE) n in L(dt,l)
n = 2 for LOS path, n = 3 for

NLOS path
Standard deviation of log-norm shadowing σX σX = 6.8 dB

Noise power σ2
t,l,∀l −92 dBm

Table 5.2: Simulation parameters
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Figure 5.5: User’s movement trajectory considered in the simulations. We consider T = 20, L = 4,
Q = 100, and the grid resolution is 5 × 5 m. (a) the user moves in a directional manner; (b) the user
moves without a directional trend.
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Figure 5.6: RMSE performance versus the transmit power PT when ULA is used. Set Nl = 32,∀l,
Q = 100. Left: directional user movement; Right: non-directional user movement.

estimation at the t-th time slot in the k-th simulation run, and K = 500, T = 20 for each

scheme. We set Ml = Nl,∀l, ρ01 = ρ10 = 0.2. The TPM Gt is learned by the previous

location estimates for the directional user movement and is set to have equal probability in

the potential nonzero indices for the non-directional user movement. Note that the simulation

results for the message-passing-based algorithms [24, 25] are not shown because these algo-

rithms will totally diverge under the ill-conditioned sensing matrix in the location tracking

problem.

5.5.1 Impact of Transmit Power and User Movement Direction

The RMSE performance of different algorithms versus the transmit power PT is shown in

Fig. 5.6 for ULA and Fig. 5.7 for UCA. Under each antenna configuration, we consider

different user movement trajectories. From the simulation, we found that the RMSE perfor-

mance of the original DiSouL [90] becomes worse for higher transmit powers because as

PT increases, the effective noise power (i.e., the mismatch between the measurements and

the signal model) caused by the position/angle offset is enlarged, but the constraint bound ε

(which is supposed to reflect this mismatch) in [90, (17b)] only depends on the AWGN power

and is not adjusted according to the increased effective noise power. On the other hand, the

VBI-based methods can automatically learn the effective noise power and thus is less sensi-

tive to the position/angle offset. The modified DiSouL baseline is added in this subsection
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Figure 5.7: RMSE performance versus the transmit power PT when UCA is used. Set Nl = 32,∀l,
Q = 100. Left: directional user movement; Right: non-directional user movement.

to deal with the inappropriate ε for higher PT . Specifically, ε is set to be a larger value (cal-

culated assuming the largest off-grid effect) at the first iteration, then is gradually decreased

in the grid refinement procedure. Fig. 5.6 and 5.7 show that the modified DiSouL performs

better than the original DiSouL for higher PT .

From Fig. 5.6 and Fig. 5.7, we can see that the proposed algorithm with off-grid refine-

ment outperforms the other baselines under different antenna arrays for both directional and

non-directional user movement. In the directional case, the previous location estimates could

provide more accurate prior for the transition matrix Gt, therefore the proposed algorithm

achieves better performance compared to the non-directional case. This further confirms that:

Firstly, the proposed TMGS probability model captures the first-order structure of the mas-

sive MIMO channels in location tracking problem; Secondly, the proposed algorithm is not

sensitive to the true distribution of the channel and can work well under the typical simulation

setup.

In order to show the robustness of our algorithm to Assumption 1, in the left side of Fig.

5.6, we also simulate the case when the LOS path between user and BS3 (as shown in Fig.

5.5) is blocked during the tracking process. The simulation results are presented by the dash

lines. It shows that even though BS3 cannot receive LOS path from the moving user, the

proposed algorithm still can work quite well. In particular, we do not need every BS to have a

LOS path to the user. We just need a few (e.g. 3 BSs with active LOS path) and the algorithm

can achieve good performance. Hence, the algorithm is quite robust to the LOS blocking
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Figure 5.8: RMSE performance versus the number of antennas Nl for directional user movement.
Consider equal transmit antenna numbers at all BSs, and UCA is used. Set PT = 8 dBm, Q = 100.

scenario.

5.5.2 Impact of Antenna Numbers

Fig. 5.8 illustrates the RMSE performance of different algorithms versus the number of

antennas Nl. It shows that the proposed D-VBI outperforms all other baselines for massive

antenna arrays. When the antenna number is increasing, the angular resolution is improved,

which can improve the localization accuracy.

5.5.3 Impact of Grid Resolution

Fig. 5.9 plots the cumulative density function (CDF) of the root-temporal-mean-square error

(RTMSE), defined as RTMSE =
√

1
T

∑T
t=1 ‖p̂t − pt‖2, for different location grid resolu-

tions. It shows that the proposed algorithm achieves higher location tracking accuracy with

higher probability compared to the baselines for different grid resolutions.

5.5.4 Impact of the Number of NLOS Paths

In Fig. 5.10, we plot the RMSE performance versus the number of NLOS paths. It shows

that the proposed algorithm is robust to the number of NLOS paths (i.e., the number of
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Figure 5.9: CDF of the RTMSE for different grid resolutions for directional user movement when
ULA is used. SetNl = 32,∀l, PT = 8 dBm. (a) Grid resolution is 3×3 m, Q = 256, Nr = Nc = 16,
X = 48× 48 m; (b) Grid resolution is 5× 5 m, Q = 100, Nr = Nc = 10, X = 50× 50 m; (c) Grid
resolution is 10× 10 m, Q = 25, Nr = Nc = 5, X = 50× 50 m.

scatterers in the environment), and the proposed algorithm achieves significant performance

gains compared to the baselines even when there are more NLOS paths.

5.6 Summary

We propose a novel user location tracking algorithm in massive MIMO systems. To capture

the PTC of massive MIMO channels across time and the GS resulting from the cooperative

localization, we propose a TMGS model. In order to exploit the TMGS prior and deal with

the ill-conditioned measurement matrix in location tracking problem, we propose a D-VBI

algorithm. Specifically, we first decompose the joint optimization problem into subproblems

which only involve the optimization variables at the current time slot and the posteriors from

the last time slot. Then, we obtain an approximate subproblem by substituting the exact

posterior with its approximation passed from the last time slot. Next, an inexact BCD is

proposed to find a stationary solution of the approximate subproblem. At last, we obtained the

MAP estimation of the user’s location. The simulations show the superior location tracking

performance of the proposed algorithm.
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5.7 Appendix

5.7.1 Proof of Lemma 5.1

We first illustrate how to calculate p
(
ht,y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
in the problem (5.4.1),

then we will prove the statement.

Because p
(
ht,y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
∝ p (yt |ht;κt,βt ) p

(
ht
∣∣∣y1:t−1;κ?1:t−1,β

?
1:t−1

)
.

The first term is given by (5.3.10). The second term can be calculated as

p
(
ht
∣∣∣y1:t−1;κ?1:t−1,β

?
1:t−1

)
=
∫
p (ht |ht−1 ) p

(
ht−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
dht−1,

in which p (ht |ht−1 ) = p (νt,xt,γt, zt,λt |st,vt ) p (st |st−1 ) p (vt |vt−1 ) . Then we have

p
(
ht
∣∣∣y1:t−1;κ?1:t−1,β

?
1:t−1

)
= p (νt,xt,γt, zt,λt |st,vt )

∑
st−1,vt−1

p (st |st−1 ) p (vt |vt−1 ) p
(
st−1,vt−1

∣∣∣y1:t−1;κ?1:t−1,β
?
1:t−1

)
.

Then we can get the final expression of p
(
ht,y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
, as given by (5.4.2).
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The optimization problem (5.4.1) can be calculated as follows:

∫
q (ht) ln

p
(
ht,y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
q (ht)

 dht
≤ ln

∫
q (ht)

p
(
ht,y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
q (ht)

dht (5.7.1)

= ln p
(
y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
,

where Jensen’s inequality is applied to (5.7.1). Therefore, (5.4.1) is maximized w.r.t. q (ht)

when q (ht) has the following form:

q? (ht) = p
(
ht
∣∣∣y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
, (5.7.2)

and the optimization problem (5.4.1) is reduced to

max
κt,βt

ln p
(
y1:t;κ?1:t−1,β

?
1:t−1,κt,βt

)
. (5.7.3)

Therefore, the optimal solutions of (5.7.3), i.e., κ?t , β
?
t are the optimal solutions of the original

problem (5.3.12).

5.7.2 Gradient Update for Off-grid Parameters

The derivative ξκt can be calculated as ξκt = [ξ (κt,1) ; · · · ; ξ (κt,Q)], with

ξ (κt,q) =

 ∑L
l=1 2Re

(
ã′Ht,l,q (ãt,l,qc1 + c2)

)
c3∑L

l=1 2Re
(
ã′Ht,l,q (ãt,l,qc1 + c2)

)
c4

 ,

where c0 = 〈νt,l〉 , c1 = −c0

(∣∣∣µxt,l,q∣∣∣2 + Σx
t,l,q,q

)
, c2 = −c0

(∑
q′ 6=q Σx

t,l,q′,qãt,l,q′ −
(
µxt,l,q

)∗
yt,l,−q

)
,

c3 = −
(
φyq + κyt,q − p̃yl

)
/ ‖φq + κt,q − p̃l‖2, c4 =

(
φxq + κxt,q − p̃xl

)
/ ‖φq + κt,q − p̃l‖2 ,

yt,l,−q = yt,l −Bt,l (βt,l)µzt,l −
∑
q′ 6=q ãt,l,q′µxt,l,q′ , ãt,l,q = al (θt,l (φq + κt,q)) and

ã′t,l,q = dal (θt,l (φq + κt,q)) /dθt,l (φq + κt,q).

The derivative ξβt,l can be calculated as ξβt,l = [ξ (βt,l,1) , · · · , ξ (βt,l,Ml
)]T , with

ξ (βt,l,m) = 2Re
(
ā′Ht,l,m (āt,l,mc5 + c6)

)
,
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where c5 = −c0

(∣∣∣µzt,l,m∣∣∣2 + Σz
t,l,m,m

)
, c6 = −c0

∑
m′ 6=m Σz

t,l,m′,māt,l,m′+c0
(
µzt,l,m

)∗
yt,l,−m,

yt,l,−m = yt,l − At,l (κt)µxt,l −
∑
m′ 6=m āt,l,m′µzt,l,m′ , āt,l,m = al (ϑm + βt,l,m) and ā′t,l,m =

dal (ϑm + βt,l,m) /dβt,l,m.

5.7.3 Proof of Lemma 5.3

For conciseness, we omit the time index t. The non-decreasing property can be achieved by

U
(
q

(i)
1:|H|,κ

(i),β(i)
)
≤ U

(
q

(i+1)
1 , q

(i)
2:|H|,κ

(i),β(i)
)

≤ · · ·

≤ U
(
q

(i+1)
1:|H| ,κ

(i),β(i)
)

≤ Ut
(
q

(i+1)
1:|H| ,κ

(i+1),β(i)
)

≤ U
(
q

(i+1)
1:|H| ,κ

(i+1),β(i+1)
)
.

The objective function U is upper bounded by 1, therefore the non-decreasing sequences

U
(
q

(i)
1:|H|,κ

(i),β(i)
)

converge to a limit.

From Section 5.4.4, the updates of q (h) can be considered as some parameterized func-

tions. For example, a Gamma distribution with parameters
{
ãl,q, b̃l,q

}
for q (γ) ,or a Gaussian

distribution with parameters {µxl ,Σx
l } for q (x). Therefore, the optimization problem (5.4.5),

which is optimized over the functional space for q (h), can be considered as a conventional

parameter optimization problem. Denote all the updated parameters related to q (h) and

{κ,β} as r, which includes H = |H| + 2 blocks of parameters. The first |H| blocks are

updated alternatively by

rin = arg max
rn

un(rn, ri−1), n = 1, · · · , |H|, (5.7.4)

where un(rn, ri−1) , U(rn, ri−1
−n ), and (5.7.4) has unique solution for any point ri−1, as

shown by Lemma 5.2. For the last two blocks, the gradient update in (5.4.12) and (5.4.13)

are equivalent to solving the convex approximation of the original function for the n-th block,

which is

yin = arg max
rn

un(rn, ri−1), n = |H|+ 1, |H|+ 2

rin = ri−1
n + ∆i

n · di−1
n , (5.7.5)
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where di−1
n = yin−ri−1

n , and un(rn, ri−1) , U(ri−1)+〈U ′n (ri−1) , rn − ri−1
n 〉−1

2 ‖rn − r
i−1
n ‖

2,

where U ′n (ri−1) is the block partial gradient of U at ri−1
n , and ∆i

n is the stepsize determined

by the Armijo rule. It can be seen that

un(ri−1
n , ri−1) = U(ri−1),

u′n(rn, ri−1)
∣∣∣rn=ri−1

n
= U ′n

(
ri−1

)
. (5.7.6)

Consider a limit point w and a sub-sequence {rij}j converging to w. For the first |H|

blocks with a unique solution in (5.7.4), following the same proof for Theorem 2-b in [104],

we can get

un(wn,w) ≥ un(rn,w),∀rn, n = 1, · · · , |H|. (5.7.7)

For the last two blocks updated by (5.7.5), due to the use of the Armijo step size, following

similar contradiction proof as (A.27)-(A.29) in [104], we have limj→∞ d
rj
n = 0. Because

un(yij+1
n , rrj) ≥ un(rn, rrj), ∀rn and yij+1

n = d
ij
n + rijn , letting j →∞ yields

un(wn,w) ≥ un(rn,w),∀rn, n = |H|+ 1, |H|+ 2. (5.7.8)

The inequalities (5.7.7) and (5.7.8) imply that the u′n(rn,w;dn) |rn=wn ≤ 0, ∀dn ∈ R|rn|,

which is the directional derivative of un at point wn in direction dn. Combining this with

(5.7.6) yields

U ′ (w;d) ≤ 0,∀d = (0, · · · ,dn, · · · , 0),

which is the directional derivative of U at point w in direction d. This implies that point w

is the stationary point of U .

5.7.4 Derivation of Eq.(5.4.16)-(5.4.24)

q(νt) in (5.4.16) can be derived as

ln q (νt) ∝ 〈ln p (yt |xt, zt,νt;κt,βt )〉xt,zt + ln p (νt)

∝
∑
l

−νt,l
〈
‖yt,l −At,l (κt) xt,l −Bt,l (βt,l) zt,l‖2

〉
xt,zt

+Nl ln νt,l + (a− 1) ln νt,l − bνt,l

∝
∑
l

(ct,l − 1) ln νt,l − dt,lνt,l.
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q(xt,l) in (5.4.17) can be obtained as

ln q(xt,l) ∝ 〈ln p (yt,l |xt,l, zt,l, νt,l;κt,βt,l )〉zt,l,νt,l + 〈ln p (xt,l |γt,l )〉γt,l
∝−

(
xt,l − µxt,l

)H (
Σx
t,l

)−1 (
xt,l − µxt,l

)
.

q(zt,l) in (5.4.18) can be obtained similarly. q(γt) in (5.4.19) can be obtained as

ln q (γt) ∝ 〈ln p (xt |γt )〉xt + 〈ln p (γt |st )〉st

�
L∑
l=1

Q∑
q=1

(ãt,l,q − 1) ln γt,l,q − b̃t,l,qγt,l,q.

q(λt) in (5.4.20) can be obtained similarly. q (st) in (5.4.21) can be obtained as

ln q (st) � 〈ln p (γt |st )〉γt + ln p̂ (st)

∝
∑
q,l

1 (st = q)
(

ln (bl)al
Γ(al)

+ (al − 1) 〈ln γt,l,q〉 − bl 〈γt,l,q〉
)

+ 1 (st 6= q)

ln

(
b̄
)ā

Γ(ā) + (ā− 1) 〈ln γt,l,q〉 − b̄ 〈γt,l,q〉

+ ln
Q∑
q=1

πt,qδ (st − q)

∝ ln
Q∑
q=1

π̃t,qδ (st − q) .

q (vt) in (5.4.23) can be obtained similarly.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The central theme of this thesis has been the CS algorithm designs with applications to mas-

sive MIMO systems, such as the channel estimation in massive MIMO systems, channel

tracking in massive MIMO systems and user location tracking in massive MIMO systems.

Different application scenarios will pose different challenges for the CS algorithm design.

Therefore, it’s necessary to design efficient and robust CS algorithm to address the challenges

under different applications and exploit the additional beneficial information to enhance the

CS recovery performance. We summarize the contributions as follows.

6.1.1 Weighted LASSO for Massive MIMO Channel Estimation

In practice, it’s possible to obtain statistical PSI about the sparse signal to be recovered and

it’s critical to optimally incorporate such statistical PSI to enhance the recovery performance.

We propose a weighted LASSO algorithm to fully exploit the statistical PSI and optimize the

recovery performance. We also derive the closed-form accurate expression for the minimum

aNSE and analyze the minimum number of measurement required for stable recovery.

In massive MIMO system, BS can obtain certain channel support side information (CSSI),

which can be exploited to enhance the CE performance and reduce the pilot overhead. There-

fore, the weighted LASSO algorithm can be applied for CE problem in massive MIMO sys-

tem to utilize the CSSI in an optimal way. Based on the accuracy of the CSSI, the optimal

LASSO weights which minimize the aNSE can be obtained. Moreover, we can characterize

the minimum number of pilots required to achieve stable channel recovery, which provides
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valuable instructions for practical CE problem.

6.1.2 Dynamic Turbo-OAMP for Massive MIMO Channel Tracking

CS has been applied to exploit the structured sparsity of massive MIMO channels to reduce

the pilot overheads in massive MIMO downlink channel estimation and channel tracking.

However, the existing structured sparse channel estimation algorithms are designed based

on oversimplified channel models with restrictive assumptions, and thus perform poorly un-

der realistic channels. We propose a new statistical model, i.e., 2D-MM, to capture the 2D

dynamic sparsity (i.e., structured sparsity in the spatial domain and probabilistic temporal

dependency of channel in the temporal domain) of massive MIMO channels, which has the

flexibility to model different propagation environment in practice. By combining the turbo

approach and the OAMP, we derive an efficient message passing algorithm called D-TOAMP

to recursively track a dynamic massive MIMO channel with 2D-MM sparsity prior. The

proposed D-TOAMP can achieve a better performance than AMP-based algorithm due to

the usage of orthogonal measurement matrix and the exploitation of the structured sparsity.

Moreover, the proposed D-TOAMP provides a systematic framework for the tracking of the

dynamic sparse signals.

6.1.3 Turbo-VBI for Robust Recovery of Structured Sparse Signals with

Uncertain Measurement Matrix

In many practical applications in wireless communications, we need to solve the problem

of recovering a structured sparse signal from a linear measurement model with uncertain

measurement matrix. There are two challenges of designing a general algorithm framework

for this problem. The first is how to design a flexible and tractable sparse prior to capture

different structured sparsities in specific application. The second is how to handle a general

measurement matrix that may contain uncertain parameters and may be ill-conditioned with

correlated columns. Due to the restrictions of the existing CS recovery methods, we need

to propose an efficient and robust CS algorithm to overcome these challenges. Specifically,

we first propose a 3LHS sparse prior to capture various sophisticated structured sparsities

that may occur in practice. Then, by combing the message passing and VBI approaches

via turbo framework, we propose a Turbo-VBI algorithm to fully exploit the 3LHS structured

136



sparsity prior under an uncertain measurement matrix to achieve robust and efficient recovery

performance.

6.1.4 D-VBI for User Location Tracking in Massive MIMO Systems

In 5G network, accurate user location tracking is the key to enable location-based services

and assist communications. To improve the location tracking accuracy, user mobility model

and temporal correlation of massive MIMO channels can be utilized. Moreover, the coopera-

tive localization of multiple BSs based on the location grid induces a group-sparsity structure

of the LOS channels. We propose a 3LHS sparse prior called TMGS to jointly capture the

temporal correlation and group sparsity of massive MIMO channels in location tracking prob-

lem. Then, a variant of Turbo-VBI algorithm, i.e., D-VBI, is proposed to handle the TMGS

prior under ill-conditioned measurement matrix which contains off-grid uncertain parame-

ters. Due to the probabilistic temporal dependencies of massive MIMO channels, the D-VBI

algorithm can provide prior information about the support of massive MIMO channels in the

next time slot to improve the location tracking accuracy

6.2 Future Work

CS plays a key role in many engineering and scientific applications, such as image signal

processing [105], wireless communications [7,10], autonomous driving [106], etc. Therefore,

developing novel CS algorithms to accommodate to different application requirements still

has great potential.

6.2.1 Efficient Robust CS Algorithm Design for Large Dimensional Prob-

lem

When we need to reconstruct a large dimensional (in the order of 104-106) sparse signal

from a noisy measurement, it’s necessary to design a computational efficient CS algorithm to

reduce the computation cost. SBL/VBI has some appealing properties, such as good recovery

performance compared to greedy algorithms, robust to the measurement matrix compared to

AMP-based algorithm. However, one of the primary deficiencies of the Bayesian methods

is their high computational complexity due to the covariance matrix inversion in Gaussian
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models. Even though the AMP-based approach has low complexity (linear complexity), the

fact that it only performs well under i.i.d. or partially orthogonal measurement matrix will

hinder its usage in many practical applications. Therefore, for a future research direction, it’s

interesting to develop an efficient robust CS algorithm for large dimensional problem, which

has low computational complexity and is robust to different types of measurement matrices.

One possible application of efficient CS algorithm is massive connectivity, which is a key

requirement for future wireless cellular networks. In a massive device connectivity scenario,

a BS may be required to connect a large number of devices (in the order 104 to 106) and the

device activity patterns are typically sporadic so that at any given time, only a small fraction of

devices are active [107]. The BS needs to identify the active users and estimate their channels

before the data transmission takes place. Due to the large number of potential devices and

the massive antennas with arbitrary geometry employed at the BS, the resulting CS problem

is high dimensional, and an efficient robust CS algorithm design would be necessary to solve

the large dimensional problem with low complexity and robust performance.

6.2.2 Robust Bilinear CS Algorithm Design

The existing bilinear CS algorithms include massage-passing-based algorithms, such as BiGAMP

[108], PBiGAMP [109], bilinear adaptive VAMP (BAd-VAMP) [110] and SBL-based algo-

rithm in [111]. The massage-passing-based bilinear CS algorithms have i.i.d. assumptions on

the measurement matrices or the matrices needed to be recovered, which will make them un-

usable for some applications. The SBL-based bilinear CS algorithm has high computational

complexity and it’s difficult to incorporate the complicated prior for the sparse matrix. Thus,

it’s necessary to develop robust bilinear CS algorithm to jointly recover structured sparse

matrix and dense matrix from linear measurements with uncertain measurement matrices.

One possible application of robust bilinear CS algorithm is joint channel estimation and

data detection in massive MIMO system. The joint channel-data estimation can improve the

system performance since the partially detected data symbols can be used as soft pilots to

enhance the quality of channel estimation in an iterative way. The resulting problem is a

bilinear CS recovery problem with the problem formulation given by Y = A(ϑ)SB(β)X +

Z, where S is the sparse angular domain channel, which exhibits spatial structured sparsity;

X is the transmitted data symbol, which should satisfy the finite-alphabet constraint; A and

B are the array response matrices at BS side and user side, which could have general forms
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based on the antenna geometry; ϑ and β are the off-grid parameters to eliminate the power

leakage due to the angular discretization at BS side and user side. The robust bilinear CS

algorithm should be designed to recover the structured sparse matrix S and the dense matrix

X from the measurement Y simultaneously and automatically learn the off-grid parameters

ϑ and β in the recovery process.

6.2.3 Non-linear CS Algorithm Design

To incorporate the physical impairments in wireless communication data path, such as the

non-linearity of power amplifier (PA), quantization effect or low resolution analog to digital

converter (ADC), it’s necessary to design a general non-linear CS algorithm. Consider the

following model: y = f(Ax + n), where A ∈ CM×N is a general sensing matrix, x ∈ CN is

a sparse signal, n ∈ CM is a general noise vector (could be non-Gaussian), f : CM → CM is

a non-linear function. One possible research direction is to figure out the requirement on the

nonlinear function f and the system parameters such as the sparsity ratio ‖x‖0 /N and the

sampling rateM/N , such that the stable recovery of x from y is possible. It’s also interesting

to develop efficient non-linear CS algorithm to achieve robust recovery of sparse signal from

a nonlinear measurement model.
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