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Configuration Optimization and Channel Estimation
in Hybrid Beamforming mmWave Systems With

Channel Support Side Information
Lixiang Lian , Member, IEEE, and Vincent K. N. Lau, Fellow, IEEE

Abstract—Hybrid beamforming (HBF) is a promising technique
in millimeter-wave (mmWave) systems with a limited number of
radio frequency (RF) chains. Acquiring channel state information
is essential for HBF design. Various compressive-sensing-based
channel estimation (CE) schemes that exploit the sparse nature
of mmWave channels have been proposed. The design of an ana-
log beamforming matrix plays a key role in providing high CE
quality with low pilot overhead. In this paper, a novel and flexible
HBF architecture called adaptive sum product network (ASPN)
is proposed, which can realize more flexible analog beamforming
with less hardwares. Based on the ASPN architecture, a novel
variational-Bayesian-inference-based compressive CE algorithm
is proposed, which can fully exploit the channel support side in-
formation (CSSI) at the base station under a general uncertain
measurement matrix induced by the off-grid parameters for power
leakage elimination. To optimally configure the degrees of freedom
in the ASPN according to the CSSI, a dynamic configuration opti-
mization algorithm is proposed by formulating the CE performance
metric in terms of the configuration parameters of ASPN. The
importance and effectiveness of the flexibility introduced in ASPN
HBF architecture, the compressive CE algorithm as well as the
configuration algorithm are illustrated by the superb performance
of the proposed scheme compared to the representative state-of-
the-art techniques through extensive simulation results.

Index Terms—Compressive channel estimation, channel support
side information, configuration optimization, millimeter-wave
systems.

I. INTRODUCTION

M ILLIMETER-WAVE (mmWave) massive multiple input
multiple output (MIMO) is a promising technology for

future 5G wireless communication systems, which can provide
large spatial multiplexing gain and array gain to enhance both the
capacity and energy efficiency of wireless systems [1]. However,
the hardware cost and power consumption become unaffordable
when a dedicated radio frequency (RF) chain is used for each
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antenna. To overcome this issue, hybrid beamforming (HBF)
that splits the beamforming (BF) processing into the analog and
digital domains has been proposed [2], [3] to reduce the number
of RF chains. HBF designs rely on the availability of channel
state information at the base station (CSIT). However, the limited
number of RF chains pose a great challenge for the estimation
of the high dimensional channel.

In a conventional time division duplex (TDD) MIMO system
with a full set of RF chains, the downlink CSIT can be obtained
via uplink training due to the channel reciprocity. However, in
an HBF system with limited RF chain constraint in the base
station (BS), only a small subspace of the mmWave channel can
be measured at each time due to the reduced dimension of the
measurement signal. Conventional uplink training requires more
training pilots to accurately estimate the large scale channel.
Existing literature has partially addressed the issues by designing
the analog BF to enhance the signal noise ratio (SNR) of the
received pilot symbols as well as exploiting sparsity in the
channel matrix to be estimated [3]–[10]. Based on the hardware
constraints considered in the design of analog BF, existing works
on CE with HBF can be divided into following categories.
� Constant Amplitude Constraint on Analog BF: In prac-

tice, since the analog BF operates in the RF domain, it is
desirable to exclude active elements in the realization of
analog BF. There are some works that impose the constant
modulus constraint in the entries of analog BF [3]–[8]. As
a result, the solution requires only passive phase shifters
(PSs) and passive adders only. In terms of the phase shifter
resources required in the analog BF, these works can
only work for static fully-connected HBF architecture, and
hence, the number of RF PSs required is MS (M is the
number of antennas, S is the number of RF chains), which
is a huge number for massive MIMO systems.

� Limited Phase Shifters in the Realization of Analog
BF: Since the analog BF operates in the RF frequency
and hence, the PSs are expensive [9]–[11]. There are some
works that considered the limited PSs in the realization of
analog BF for CE with HBF. [9] introduced a PS reduced
adaptive selection network for CE, in which a random part
of the PS is disconnected from the antennas to reduce the
power consumption. However, the authors did not design
the adaptive selection network to enhance the CE perfor-
mance. Moreover, a huge number of PSs are still required,
i.e., MS/10, to achieve acceptable CE performance. The
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switches are used in [10] to replace the PSs to reduce the
hardware cost. However, the switch-based HBF will cause
significant performance degradation.

Due to the high price and power consumption of RF PSs [9]–
[11], it is important to consider the design of analog BF for
channel estimation under the constraints of limited number of
RF PSs, which has not been fully addressed by the existing
literature.

To accommodate to the limited PS resources, [11]–[14] pro-
posed to design dynamic-connected HBF architecture to realize
flexible analog BF matrix. However, the existing dynamic de-
signs have the following drawbacks. First, the existing dynamic
HBF architectures are designed to maximize the spectrum ef-
ficiency/sum rate or minimize the distance with a fully-digital
design in [11]–[14] assuming perfect channel information with-
out considering the CE performance. Second, the existing dy-
namic HBF structures have some restrictions. For example, the
dynamic HBF structure in [13], [14] requires that the number of
PSs is the same as the number of antennas, and one PS is used to
connect each RF chain-antenna pair, which can only realize the
restrictive analog BF with constant modulus entries; [11], [12]
assume that the PSs are with fixed phases, which restricts the
flexibility of providing a high HBF gain especially with limited
PS resources; a large number of PSs are still required for each
RF chain-antenna connection, i.e., ∼40 PSs in [11] to achieve
acceptable precision; the parallel processing RF PSs used in [12]
can cause additional hardware costs and power consumptions.

In this paper, we consider channel estimation problem under
hardware constrained HBF in the sense that the number of RF
PSs and the number of RF chains are limited in the BS in the
uplink direction and imperfect channel support side informa-
tion (CSSI)1 can be obtained at the BS. A joint CSSI-assisted
configuration optimization and CCE algorithm is proposed to
estimate the mmWave massive MIMO channels with low pilot
overhead and a flexible HBF network. The main contributions
are summarized as follows.
� Adaptive Sum-Product Network Architecture for Ana-

log BF: One of the key contribution of the paper is to
propose a novel and flexible hardware architecture to con-
struct the analog BF in HBF solution. To overcome the
restrictions of the existing HBF architectures, an adaptive
sum-product network (ASPN) architecture is proposed,
which is radically different from the existing architec-
tures [2]–[14], [16] by enabling an arbitrary number of
PSs with adjustable phases and a flexible mapping strategy
between RF chains and antennas. For example, more than
one PSs are allowed to connect one RF chain to the antenna.
This allows synthesis of more general analog BF matrix
where each entry can have different constant modulus. This
enables more flexibility on the analog BF matrix. As a
result of more flexible architecture, the proposed ASPN is
more hardware efficient and can achieve much better CE
performance under the same hardware constraint.

1In practice, the channel support usually changes slowly [15] and the CSSI at
the BS can be obtained from previously estimated channel supports [8].

� The Robust Channel Estimation Algorithm Based on
the ASPN Solution: Based on the proposed ASPN-based
analog BF architecture, a robust and highly effective CE
algorithm is proposed that can estimate the higher dimen-
sional channel matrix from the low dimensional pilot mea-
surements. Compared to the existing compressive sensing
(CS) based CE methods, the proposed CSSI-assisted vari-
ational Bayesian inference (CAVBI) algorithm can fully
exploit the imperfect CSSI under a general uncertain2 mea-
surement matrix induced by the flexible ASPN architecture
and the off-grid parameters for power leakage elimination.
The existing CS algorithms, such as orthogonal matching
pursuit (OMP)-based algorithm [17], LASSO-based algo-
rithm [6], [8], [18], approximate message passing (AMP)-
based algorithm [19], [20] and Bayesian inference-based
algorithm [21]–[23], which can only exploit the CSSI
or handle the uncertain measurement matrix, cannot be
effectively used to solve the problem considered in this
paper.

� Configuration Optimization of ASPN: While the ASPN
gives more freedom on the realization of analog BF matrix,
it is highly non-trivial on how to configure the degrees of
freedom dynamically based on CSSI. We pose the dynamic
configuration as an optimization problem by minimizing
the mean square error (MSE) of the compressive CE al-
gorithm. The key challenge is on the development of the
closed form objective function (MSE of CE algorithm) in
terms of the configuration parameters. Furthermore, the
problem is highly nonconvex. Using successive convex
approximation (SCA) technique, a low complexity CSSI-
assisted parallel successive convex approximation (CAP-
SCA) configuration optimization algorithm is proposed.

The rest of the paper is organized as follows. In Section II, the
system model for the mmWave CE is introduced. In Section III,
we present the ASPN analog BF architecture. After this, we
elaborate the CSSI-assisted CCE algorithm in Section IV for
a given ASPN architecture and introduce the CSSI-assisted
configuration optimization algorithm in Section V to optimally
configure the degrees of freedom of ASPN architecture. Finally,
the simulation results and the conclusion are given in Section VI
and Section VII, respectively.

Notations: Upper case and lower case bold face letters denote
matrices and vectors, respectively.x[m]means them-th element
of vector x. CN (x;μ,Σ) stands for complex Gaussian vector
x with expectation μ and co-variance matrix Σ. tr(X) stands
for the trace of matrix X. X = diag(x) means matrix X is a
diagonal matrix with x on the diagonal. A = Diag(A1,A2)
means matrix A is a diagonal block matrix with A1 and A2

on the diagonal. vec(X) means the vectorization of matrix X.
a = Θ(1) means that a is of order 1. δ(·) stands for the Dirac
delta function. |H|means the cardinality of the setH. X−1, XT

and XH denotes the inverse, transpose and conjugate transpose

2Here, the generality of the measurement matrix is induced by the flexible
ASPN architecture. The uncertainty of the measurement matrix refers to the
off-grid parameters introduced to eliminate the power leakage in the sparse
representation of the mmWave channel.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 09,2022 at 12:24:58 UTC from IEEE Xplore.  Restrictions apply. 



6028 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 1. Illustration of the uplink channel estimation with HBF reception at the
BS.

of matrix X, respectively. N+ stands for the positive integer set.
Mod denotes the modulo operation. (x)∗ means the conjugate of
x. 1N×M stands for the all-one matrix with dimensionN ×M .
IN×N stands for the N ×N dimensional identity matrix.

II. SYSTEM MODEL

A. Uplink Channel Estimation With HBF At the BS

In this paper, we focus on the uplink mmWave channel
estimation problem with a massive MIMO BS communicating
with a single antenna user3 and consider hybrid beamforming
reception at the BS side where the number of RF chains S is
much less than the number of antennas M . Note that channel
estimation is performed at the BS during a training phase based
on uplink pilot symbols. At the training phase, the user transmits
T uplink training symbols to the BS. BS processes the received
training symbols with an analog BF matrix Wt ∈ CM×S at the
t-th training slot to convert the M -dimensional received RF
signals to the S-dimensional baseband signals. The baseband
signal yt ∈ CS at the S outputs of the RF chains will be
used as baseband measurements to recover the original higher
dimensional channel as illustrated in Fig. 1.4

Without loss of generality, we assume T identical pilot sym-
bols are transmitted and the average transmit power is normal-
ized to be one. After analog combining, the received baseband
signal yt ∈ CS , t = 1, . . . , T at the BS can be written as

yt = WH
t (h+ ñt) = WH

t h+ nt, t = 1, . . . , T, (1)

where h ∈ CM is the uplink channel. For clarity, we focus on
a narrowband system with flat block fading channel, but the
proposed algorithm can be easily modified to cover the wideband
system as well. ñt ∼ CN (0, σ2I) is the measurement noise
at the receiver antennas, and nt ∼ CN (0, σ2WH

t Wt) is the
effective noise after combining using analog BF matrix Wt. Let
y = [y1; · · · ;yT ] and n = [n1; · · · ;nT ] ∈ CST . Then (1) can

3For a multi-user system, the users can send orthogonal pilot sequences to
the BS for uplink training, there is no interference between different users.
Therefore, we focus on the uplink CE problem for a reference user in this paper
for clarity.

4Note that the analog BF matrix plays a key role in the channel estimation.
On the one hand, with an HBF architecture, the mmWave channel can only be
observed through the analog combining network, which projects the received
RF signal to the baseband. On the other hand, the analog BF should also provide
SNR gain to the received pilot symbols if properly designed. Therefore, the
analog BF design has been the key focus in most of the existing papers studying
CE problem with HBF architecture [4]–[10] and digital BF does not play any
role in the CE based on the baseband measurements yt.

be expressed in a compact form as [5]–[9],

y = WHh+ n, (2)

where n ∼ CN (0, σ2Σn), with

Σn = Diag
(
WH

1 W1, . . . ,W
H
T WT

)
. (3)

Giveny andW, the goal of CE is to recover the uplink channel
h. Note that for each training slot, only an S dimensional signal
can be measured due to the employment of HBF with S RF
chains. If the least squares (LS) method is used to estimate the
CSI h from y, it requires at leastM/S pilots, which will cause a
huge CSI signaling overhead for the HBF system with S �M .
Hence, it is necessary to design more effective CE methods to
reduce the required training overhead under HBF system.

B. Off-Grid-based Sparse Channel Model

1) MmWave Channel Model: Since mmWave channels are
expected to have limited scattering [24]–[26], we adopt a geo-
metric channel model with L multipaths. Under this model, the
channel h can be expressed as [3], [5], [10]

h =

L∑
l=1

αla (θl) , (4)

where αl and θl represents the complex gain and angle of
arrival (AoA) of the l-th multipath, respectively, a(θ) is the array
response vector at the BS for AoA θ. Let pm = [pxm, p

y
m]T be

the position of the m-th antenna relative to the array’s gravity
center. For arrays without mutual antenna coupling and isotropic
antennas, the array response vector a(θ) for a given AoA θ has
the following expression [27, Eq. (2)]:

[a(θ)]m = exp

(
2πi

λ
pTm

[
cos (θ)
sin (θ)

])
, (5)

where [a(θ)]m denotes the m-th element of a(θ) and λ denotes
the wavelength of the uplink propagation.

2) Off-Grid Basis for the Sparse Channel Model: Let
{ϑ̂1, . . . , ϑ̂M} be a uniform sampling grid, which uniformly
covers the angular domain (0, 2π]. In practice, the true AoAs
{θl}Ll=1 usually do not lie exactly on the grid points. To handle
the direction mismatch, we adopt an off-grid model for the
angular domain channel representation. Specifically, if θl /∈
{ϑ̂1, . . . , ϑ̂M} and ϑ̂ml

, ml ∈ {1, . . . ,M} is the nearest grid
point to θl, θl can be written as

θl = ϑ̂ml
+ βml

, (6)

where βml
is the off-grid gap. Then we have a(θl) = a(ϑ̂ml

+
βml

). The uplink channel h in (4) has a sparse representation
with an off-grid basis as given by

h = A (β)x, (7)

where x ∈ CM is the sparse angular domain channel, β =
[β1, . . . , βM ]T ,A(β) = [a(ϑ̂1 + β1), . . . ,a(ϑ̂M + βM )], and

βml
=

{
θl − ϑ̂ml

, l = 1, · · ·L
0, otherwise

. (8)
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Fig. 2. Simulated angular domain channel using the mm-SSCM channel
model. Consider a uniform linear array (ULA) with M = 256.

Note that with the off-grid basis, the model could significantly
alleviate the direction mismatch because there always exists
some βml

making (6) hold exactly.
The sparse channel model in (4) and (7) is verified using the

28 GHz mmWave statistical spatial channel model (mm-SSCM)
proposed in [26], which was developed based on the high fre-
quency propagation measurements in New York City, and has
been shown to faithfully reproduce realistic impulse responses of
measured urban channels. Fig. 2 illustrates a simulated mmWave
channel using the mm-SSCM. It can be seen that most of the
channel energy concentrates on a few elements in the angular
domain. Moreover, the channel tends to be more sparse if the
off-grid parameter β can be accurately learned, and the power
leakage induced by angle mismatch will be eliminated.

According to (7), the received signal y in (2) can be rewritten
by

y = Φ(β)x+ n, (9)

whereΦ(β) = WHA(β). To accurately estimate the mmWave
channel, we need to jointly recover the sparse signalx and refine
the off-grid vector β given the measurements y and analog BF
matrix W. Besides the sparse nature of the mmWave channel,
the prior information available at the BS can also be exploited
to enhance the CE performance.

C. Channel Support Side Information at the BS

DenoteΩ � {m : x[m] �= 0} as the support of channel vector
x in (9). In this paper, we assume that the BS knows an estimated
channel support Ω̂, an upper bound D of the size of the true
channel support (i.e., |Ω| ≤ D), and a lower boundDc of the size
of the intersection between the estimated and true channel sup-
port (i.e., |Ω ∩ Ω̂| ≥ Dc). The information set I = {Ω̂, D,Dc}
known at the BS is called channel support side information
(CSSI). Denote the sparsity ratio lower bound within Ω̂ as
κ1 = Dc

D̂
and the sparsity ratio upper bound outside Ω̂ as κ2 =

D−Dc

M−D̂ . One method to obtain CSSI is described as follows. As
shown in [15], channel supports usually exhibit strong temporal
correlation over consecutive time slots, and thereby, the CSSI
I can be estimated from the previously estimated Ts channel
supports {Ω̂(−Ts), . . . , Ω̂(−1)}. Specifically, Ω̂ can be chosen
as the latest estimated channel support, i.e., Ω̂ = Ω̂(−1).D

Fig. 3. The implementation of proposed adaptive HBF architecture. Assume
M = 4, S = 2,N = 4, and t-th training slot. Cross on the switching fabric
means the switch is on. zt ∈ C4 is the received signal at the antennas, rt ∈ C4

is the output signal of sum switching network, and the input signal of product
switching network, [ejφt,1 , ejφt,2 , ejφt,3 , ejφt,4 ] ∈ C4 stands for the phase
shifting vector of 4 PSs.

and Dc can be estimated as D = maxt∈{1,...,TS} |Ω̂(−t)| and

Dc = mint∈{2,...,Ts} |Ω̂(−t) ∩ Ω̂(−t+ 1)|, respectively.
Similar CSSI has also been assumed in prior works on CS

recovery algorithms [18], [28] and CCE algorithms [6], [8], [17].
As illustrated in [18], the CSSI quality depends on how much
information it can provide about the position of the support.
Specifically, when κ1 and κ2 deviate more from the mean
D
M (e.g., either close to 1 or close to 0), the CSSI quality is
higher. But when κ1 = κ2 = D

M , we cannot obtain more prior
information other than the sparsity level.

III. ADAPTIVE HBF ARCHITECTURE

The existing HBF architectures, such as the static fully-
connected structure [2]–[8], the static partially-connected struc-
ture [16] and the dynamic fully-connected or partially-connected
structure [9]–[14], have various restrictions. For example, the
elements of analog BF matrix are restricted to have a constant
modulus in [2]–[10], [13], [14], [16]; some only support a fixed
number of PSs, e.g.,MS PSs in [2]–[8] andM PSs in [13], [14],
[16]; and dynamic HBF structures are designed assuming perfect
CSI in [10]–[14]. To overcome these restrictions and consider
the hardware constrained HBF with limited number of RF PSs, a
flexible architecture, i.e.,adaptive sum-product network (ASPN)
is proposed in this section, which enables an arbitrary number
of PSs and a flexible mapping strategy between RF chains
and antennas to realize a more flexible analog BF matrix with
non-constant element modulus using a small number of PSs. To
configure the degrees of freedom in the ASPN according to the
CSSI, a dynamic configuration algorithm will be introduced in
Section V.

A. Adaptive Sum-Product Hybrid Beamforming
Network Architecture

For clarity, we focus on the t-th training slot (1 ≤ t ≤ T ).
The proposed ASPN containsN ∈ N+ PSs, a product switching
network and a sum switching network, as illustrated in Fig. 3.
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Specifically, the received signals at the antennas are passed
through the sum switching network to generate different sum
terms. The sum terms are then passed through the product
switching network, where the phases of different sum terms are
shifted by available PSs to generate different product terms, and
the product terms are adaptively combined at the RF chains to
compose the baseband measurements.

Accordingly, the analog BF matrix has the following form:

Wt = GtPtFt. (10)

Gt ∈ {0, 1}M×N describes the sum switching network, which
maps the signal fromM antennas toN PSs to generate different
sum terms. Ft ∈ {0, 1}N×S describes the product switching
network, which is connected to the PS resources and maps
the sum terms to the RF chains to generate different product
terms. Pt ∈ CN×N describes the phase shifting operation of
the available N PSs, given by a diagonal matrix

Pt = diag
([
ejφt,1 , . . . , ejφt,N

])
. (11)

Considering B bits quantized PSs, the φt,n, ∀n ∈ {1, . . . , N}
can take values from the following quantized angle set:

φt,n ∈ A �
{
0,

2π

2B
, . . . ,

(
2B − 1

)
2π

2B

}
. (12)

Remark 1: All the hardware components needed for the
ASPN implementation are N quantized PSs and NM +NS
switches to compose the sum and product switching fabric.
According to the detailed study in [10], the price and energy
consumption of switches are insignificant compared to those of
PSs [10], [11], [29]. Furthermore, the mmWave switches are
capable of switching at a fraction of nanosecond speeds where
smart switches have also been used for 60 GHz application
at the receiver side in [30]. For these reasons, it’s believed
that the introduction of switches will incur negligible delay,
cost and energy consumption in the proposed HBF design. The
advantages of the proposed architecture in terms of hardware
efficiency will be verified in Section VI.

B. Toy Example

Assume M = 4 antennas are coupled to S = 2 RF chains
via an analog combining matrix Wt with N = 4 PSs. The
configurations in Fig. 3 will be used as an example to illustrate
the proposed ASPN architecture.

Denote the received RF signal at antennas as zt ∈ CM . After
passing through the sum switching network, the output signal
rt ∈ CN can be written as

rt = GT
t zt,Gt =

⎡
⎢⎢⎣
1 1 1 0
0 1 0 1
1 1 0 0
0 1 1 1

⎤
⎥⎥⎦ . (13)

Let gt,m,n, zt,m, rt,n denote the (m,n)-th element of Gt, m-th
element of zt and n-th element of rt, respectively. gt,m,n = 1
means zt,m is passed to the n-th output port to generate the
sum terms with the other incoming signals to compose rt,n;
gt,m,n = 0 means zt,m can not be passed to the n-th output

port. After this, rt will be passed through the product switching
network, and the output signal yt ∈ CS can be written as

yt = FTt P
H
t rt, (14)

with

Pt = diag
([
ejφt,1 , ejφt,2 , ejφt,3 , ejφt,4

])
,Ft =

⎡
⎢⎢⎣
1 0
0 1
1 1
0 1

⎤
⎥⎥⎦ .

Specifically, let ft,n,s, ejφt,n , yt,s denote the (n, s)-th element
of Ft, n-th diagonal value of Pt and s-th element of yt, re-
spectively. ft,n,s = 1 means rt,n is phase shifted by the n-th
PS with e−jφt,n to generate the product term, which is passed
to the s-th RF chain to be combined with the other incoming
phase-shifted signals to compose the final baseband measure-
ment yt,s; ft,n,s = 0 means the signal rt,n doesn’t contribute to
the baseband measurement yt,s.

Combining (13) and (14), we can get that

yt = FTt P
H
t GT

t zt = WH
t zt,

with Wt given by

Wt =

⎡
⎢⎢⎣
ejφt,1 + ejφt,3 ejφt,2 + ejφt,3

0 ejφt,2 + ejφt,4

ejφt,1 ejφt,2

ejφt,3 ejφt,2 + ejφt,3 + ejφt,4

⎤
⎥⎥⎦ .

It can be seen that the proposed architecture eliminates the con-
stant modulus constraints of the traditional HBF architectures
by adaptively configuring each RF chain-antenna pair through
the design of the ASPN, resulting in terms like 0, or the sum
of several complex exponents. Hence, our architecture provides
more flexibility to make sophisticated processing in analog BF
and hence, higher BF gain to be realized.

IV. CSSI-ASSISTED VBI ALGORITHM FOR COMPRESSIVE

CHANNEL ESTIMATION

The proposed ASPN architecture can realize more flexible
analog BF matrix subject to the limited number of PSs. Hence,
we need to design a CE algorithm that can fully exploit the
flexibility (and constraints) with the proposed ASPN architec-
ture. Specifically, we need to propose a new channel estimation
algorithm which can fully exploit the imperfect CSSI and works
well under a general uncertain measurement matrix induced
by the flexible ASPN architecture and the off-grid parameters
for power leakage elimination. The existing prior information
exploited CS algorithms in [6], [8], [17]–[20], [28] cannot be
directly used, because the algorithms proposed therein can only
work well under measurement matrix with good properties, such
as independent and identically distributed (i.i.d.) Gaussian or
partial orthogonal. Bayesian inference-based algorithms, such as
variational Bayesian inference (VBI) [23] and sparse Bayesian
learning (SBL) [21], [22] have been widely applied to solve the
CS problem. However, the existing Bayesian methods only work
for i.i.d. sparse prior or simple group-sparse prior, they cannot
capture the sparsity structure induced by CSSI. Therefore, it’s
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Fig. 4. Illustration of the three-layer probability model for CSSI-assisted CCE.

necessary to propose a novel CE algorithm to effectively esti-
mate the mmWave channel under ASPN architecture.

A. Three-Layer Probability Model

To capture the sparsity structure of a mmWave channel in-
duced by CSSI and facilitate the calculation of the proposed
CAVBI algorithm, we propose a three-layer hierarchical prob-
ability model. The first layer of random variable is channel
support vector s = [s1, . . . , sM ]T ∈ {0, 1}M , where sm repre-
sents whether there is an active path arriving at the BS from
the m-th angle grid. The second layer of random variable is
precision vector ρ = [ρ1, . . . , ρM ] ∈ RM , where ρm represents
the precision (inverse of the variance) of xm. The third layer of
random variable is the sparse channel vector x. Then the joint
prior distribution of x,ρ, s is given by

p (x,ρ, s) = p (x |ρ )︸ ︷︷ ︸
SparseChannel

p (ρ |s )︸ ︷︷ ︸
Precision

p (s)︸︷︷︸
Channel Support

. (15)

Fig. 4 illustrates the structure of the proposed probability model,
and the details are elaborated below.

1) Probability Model for the Channel Support Vector: Based
on CSSI I, the prior distribution of scan be obtained as

p(s) =

M∏
m=1

πsmm (1− πm)1−sm , (16)

where πm is the prior probability of p(sm = 1), which can be
calculated based on the CSSI as

πm =

{
κ1, ifm ∈ Ω̂

κ2, ifm /∈ Ω̂
. (17)

2) Probability Model for the Precision Vector and Sparse
Channel: To allow the flexibility to model local characteristics
of the signal, a non-stationary Gaussian prior with a distinct
precision ρm for each element xm of x is considered, i.e.,

p (x |ρ ) =
M∏
m=1

CN (
xm; 0, ρ−1m

)
. (18)

The precisions ρm are further constrained by treating them as
random variables and imposing a Gamma prior distribution to
them. The Gamma prior is selected because it is conjugate to
the Gaussian, hence the associated Bayesian inference can be

performed in closed form [22], [23]. The conditional prior of
precision vector ρ is given by

p (ρ |s ) =
M∏
m=1

Γ (ρm; a, b)sm Γ
(
ρm; ā, b̄

)1−sm , (19)

where Γ(ρ; a, b) is a Gamma hyper-prior with shape parameter
a and rate parameter b.

The priors in (18) and (19) can be used to capture the sparse
nature of mmWave channels, as explained below. When sm = 1,
there is an active path from them-th angle grid to the BS. In this
case, the shape and rate parameter a, b of the precision ρm should
be chosen such that ab = E[ρm] = Θ(1) since the variance ρ−1m
of xm is Θ(1) when it is active. When sm = 0, there is no active
path from the m-th angle grid to the BS. In this case, the shape
and rate parameter ā, b̄ of the precision ρm should be chosen
such that ā

b̄
= E[ρm]� 1 since the variance ρ−1m of xm is close

to zero when it is inactive.

B. Problem Formulation

Based on the measurement model (9) and the assumption of
complex Gaussian noise, we have

p(y|x, ν;β) = CN (
y;Φ(β)x, ν−1Σn

)
, (20)

where ν = σ−2 represents the noise precision. Since ν is usually
unknown, it can be modeled as a Gamma hyperprior

p(ν) = Γ(ν; a0, b0), (21)

where we set a0, b0 → 0 as in [21]–[23].
Denote the complete hidden variables as Θ = {ν,x,ρ, s}.

Given measurements y and analog BF matrix W, our goal is to
estimate the angular domain channel x and refine the off-grid
parameters β exploiting the imperfect CSSI. In particular, the
off-grid parametersβ are obtained by maximizing the likelihood
function as follows:

β� = argmax
β

ln p (y;β)

= argmax
β

∫
Θ

ln p (y,Θ;β) dΘ. (22)

For a given β, we aim at computing the conditional marginal
posterior p(x|y;β), where

p (x|y;β) ∝
∫
Θ−x

p (y,Θ;β) d−x

=

∫
Θ−x

p (x,ρ, s) p (y|x, ν;β) p(ν)d−x. (23)

∝ denotes equality after scaling and
∫
Θ−x

(·)d−x denotes inte-
gration over ρ, s, ν. Once the estimate of β, i.e., β�, and the
associated posterior p(x|y;β�) are obtained, the maximum a
posteriori (MAP) estimation of x can also be obtained through
x� = argmaxx p(x|y;β�).

However, it is challenging to solve the problem in (22) and
calculate the posterior in (23) directly, because it is hard to
calculate the closed-form multi-dimensional integration over
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Θ in (22) and (23). Moreover, the objective in (22) is a high-
dimensional non-convex function. It is difficult to directly use
the optimization method (i.e., gradient method) to solve it. To
overcome these challenges, we propose a CAVBI algorithm to
find the approximation of the posterior distribution in (23), and
the approximate stationary point of problem (22).

C. Overview of the CAVBI Algorithm

The basic idea of the CAVBI algorithm is to simultaneously
approximate the intractable posterior p(x|y;β) with a tractable
variational distribution q(x;β) and maximize the log-likelihood
ln p(y;β) with respect to (w.r.t.) β as in (22). In summary, the
CAVBI algorithm performs iterations between the following two
major steps until convergence.
� CAVBI-E Step: Given β, calculate the approximate pos-

terior of p(x|y;β), denoted as q(x;β) by incorporating
the CSSI into the inference process, as elaborated in Sec-
tion IV-C2. An approximate posterior of p(Θ|y;β) can
also be obtained, denoted as q(Θ;β).

� CAVBI-M Step: Given q(Θ;β) ≈ p(Θ|y;β), construct a
surrogate function (lower bound) for the objective function
ln p(y;β), then maximize the surrogate function w.r.t. β,
as elaborated in Section IV-C1.

1) Cavbi-M Step: It is difficult to directly maximize the
log-likelihood function ln p(y;β) due to the lack of closed-form
expression. To make the problem tractable, in the CAVBI-
M step, an inexact majorization-minimization (MM) method
in [21] is adopted, which maximizes a surrogate function of
ln p(y;β) w.r.t. β. Specifically, let u(β; β̇) be the surrogate
function constructed at some fixed point β̇, which satisfies the
following properties:

u(β̇; β̇) = ln p
(
y; β̇

)
; u(β; β̇) ≤ ln p (y;β) , ∀β; (24)

∂u(β; β̇)

∂β

∣∣∣∣∣
β=β̇

=
∂ ln p (y;β)

∂β

∣∣∣∣
β=β̇

. (25)

Inspired by the expectation maximization (EM) algorithm [31],
we use the following surrogate function:

u(β; β̇) =

∫
p
(
Θ|y; β̇

)
ln
p (Θ,y;β)

p
(
Θ|y; β̇

)dΘ. (26)

It can be shown that the surrogate function in (26) satisfies (24)-
(25). Then in the CAVBI-M step of the i-th iteration,β is updated
as

βi+1 = argmax
β

u(β;βi), (27)

where βi stands for the value of β at the i-th iteration. However,
the maximization problem in (27) is non-convex and it is difficult
to find its optimal solution. Therefore, we use an inexact MM
algorithm, whereβi+1 is obtained by applying a gradient update
as follows:

βi+1 = βi +Δi · ∂u(β;β
i)

∂β

∣∣∣∣
β=βi

, (28)

where Δi is the stepsize determined by the Armijo rule [21].
Alternatively, a fixed stepsize can be used as mentioned in [21]

to reduce the computational complexity. The detailed expression
of the gradient in (28) is given in Appendix .

This approach, to simply increase and not necessarily maxi-
mize u(β;βi) is known as the Generalized EM (GEM). Based
on the convergence of the GEM in [31], we have the following
theorem for the convergence of the CAVBI algorithm.

Theorem 1 (Convergence of the CAVBI Algorithm): Suppose
the surrogate function u(β;βi) satisfies (24)-(25). If at each
iteration, the inexact (gradient) update as in (28) for the off-grid
parameter β is performed, the iterates generated by the CAVBI
algorithm converge to a stationary point of Problem (22).

Therefore, if the exact posterior p(Θ|y;βi) for given βi

can be calculated, we can construct the surrogate function in
(26), and the corresponding CAVBI algorithm converges to a
stationary point of (22). Unfortunately, in our case, the exact
posterior p(Θ|y;βi) is intractable due to the loops in the factor
graph. Thus, in the CAVBI-E step, we propose to find an alter-
native probability density function q(Θ;βi) to approximate the
posterior p(Θ|y;βi), which has a factorized form as

q
(
Θ;βi

)
= q

(
ν;βi

)
q
(
x;βi

)
q
(
ρ;βi

)
q
(
s;βi

)
, (29)

where q(x;βi) ≈ p(x|y;βi), q(ρ;βi) ≈ p(ρ|y;βi), etc.
Based on the posterior approximation q(Θ;βi), the tractable
surrogate function can be constructed as

û(β; β̇) =

∫
q
(
Θ;βi

)
ln
p (Θ,y;β)

q
(
Θ;βi

) dΘ, (30)

which is expected to approximately satisfy (24)-(25). Therefore,
after the convergence of the CAVBI algorithm with a tractable
surrogate function, we can obtain an approximate stationary
solution β̂ of (22) and the associated (approximate) conditional
marginal posterior p(x|y; β̂) ≈ q(x; β̂).

2) CAVBI-E Step: In the CAVBI-E step, the off-grid param-
eter β is fixed, therefore it will be omitted in the probability
expressions for simplicity. Θl is used to denote the l-th variable
inΘ, such asν,x,ρ, s. LetL = {l|∀Θl ∈ Θ}. The approximate
conditional marginal posteriors could be calculated by minimiz-
ing the Kullback-Leibler divergence (KLD) between p(Θ|y)
and q(Θ) subject to a factorized form constraint on q(Θ) as
follows:

AVBI : q
� (Θ) = arg min

q(Θ)

∫
q(Θ) ln

q(Θ)

p (Θ|y)dΘ

s.t. (29),

∫
q (Θl) dΘl = 1, ∀l ∈ L. (31)

Problem AVBI is non-convex and thus we aim at finding a
stationary solution (denoted by q∗(Θ)), as defined below.

Definition 1 (Stationary Solution): q∗(Θ) =
∏
l∈L q

∗(Θl) is
called a stationary solution of Problem AVBI if it satisfies all the
constraints in AVBI and ∀l ∈ L,

q∗ (Θl)

= arg min
q(Θl)

∫ ∏
j �=l

q∗ (Θj) q (Θl) ln

∏
j �=l q

∗ (Θj) q (Θl)

p (Θ|y) dΘ.

By finding a stationary solution q∗(Θ) of AVBI, the approxi-
mate posterior q∗(Θl) ≈ p(Θl|y), ∀l ∈ L can be obtained. A
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stationary solution of AVBI can be obtained via alternately
optimizing each individual q(Θl), l ∈ L, as will be proved by
Lemma 1. Specifically, for given q(Θj), ∀j �= l, the optimal
q(Θl) that minimizes the KLD in AVBI is given by [23]

q (Θl) ∝ exp
(
〈ln p (y,Θ)〉∏

j �=l q(Θj)

)
, (32)

where 〈f(x)〉ψ(x) =
∫
f(x)ψ(x)dx. Based on (32), the update

equations of all variables are given in the subsequent subsec-
tions. Note that the operator 〈·〉Θl

is equivalent to 〈·〉q(Θl)
, and

〈f(Θl)〉 is equivalent to 〈f(Θl)〉q(Θl)
.

D. Detailed Implementations of the CAVBI-E Step

1) Initialization: In order to trigger the alternating optimiza-
tion (AO), the following initialization for q(x), q(ρ), q(s) will
be used in the first iteration.
� Initialize q(s) as q(s) = p(s) using (16).
� Initialize a gamma distribution for ρ: q(ρ) =∏

m Γ(ρm; ãm, b̃m), where ãm = πma+ (1− πm)a,
b̃m = πmb+ (1− πm)b.

� Initialize a Gaussian distribution for x: q(x) =
CN (x;μ,Σ), where μ = ΣΦ(β)HΣ−1n y and
Σ = (diag 〈ρ〉+Φ(β)HΣ−1n Φ(β))−1.

2) Update for ν: For given q(x), q(ν) can be derived as

q(ν) = Γ(ν; ã0, b̃0), (33)

where ã0 = a0 + ST and b̃0 = b0 + 〈(y −Φ(β)x)HΣ−1n (y −
Φ(β)x)〉.

3) Update for x: For given q(ν) and q(ρ), q(x) can be
derived as

q(x) = CN (x;μ,Σ), (34)

where Σ = (〈ν〉Φ(β)HΣ−1n Φ(β) + diag 〈ρ〉)−1 and μ =
〈ν〉ΣΦ(β)HΣ−1n y.

4) Update for ρ: For given q(s) and q(x), q(ρ) can be
derived as

q(ρ) =

M∏
m=1

Γ
(
ρm, ãm, b̃m

)
, (35)

where ãm = 〈sm〉 a+ 〈1− sm〉 ā+ 1 and b̃m = 〈sm〉 b+
〈1− sm〉 b̄+

〈|xm|2〉.
5) Update for s: For given q(ρ), q(s) can be derived as

q(s) =
M∏
m=1

π̃smm (1− π̃m)1−sm , (36)

where π̃m = 1
Cπm

ba

Γ(a) exp((a− 1) 〈ln ρm〉 − b 〈ρm〉) and C

is the normalization constant, given by C = πm
ba

Γ(a) exp((a−
1) 〈ln ρm〉 − b 〈ρm〉) + (1− πm) b̄ā

Γ(ā) exp((ā− 1) 〈ln ρm〉 −
b̄ 〈ρm〉).

The involved expectations are given as follows for ∀m ∈
{1, . . .,M}:〈

(y −Φ(β)x)H Σ−1n (y −Φ(β)x)
〉

= (y −Φ(β)μ)H Σ−1n (y −Φ(β)μ)

+ Tr
(
Φ(β)HΣ−1n Φ(β)Σ

)
, (37)

Algorithm 1: CAVBI Algorithm for CCE.

1: Input: y,W,A(0), CSSI I = {Ω̂, D,Dc},
hyperparameters:
a = b = 1, ā = 1, b̄ = 0.001,a0 = b0 = 0.001.

2: Output: Channel estimate: ĥ
3: Set β = 0; Initialize the distribution functions q(x),

q(ρ) and q(s), and the related expectations.
4: while not converge do
5: % CAVBI-E Step:
6: Update q(ν) using (33) and the expectations in (38).
7: Update q(x) using (34) and the expectations in (37)

and (40).
8: Update q(ρ) using (35) and the expectations in (39).
9: Update q(s) using (36) and the expectations in (38).

10: % CAVBI-M Step:
11: Construct the surrogate function in (30) using the

approximate posterior output of CAVBI-E Step, i.e.,
q(Θ), and update β using (28).

12: end while
13: β̂ = β, p(x|y; β̂) ≈ q(x; β̂), then we have

x̂ = argmaxx p(x|y; β̂) = μ, ĥ = A(β̂)x̂.

〈ν〉 = ã0

b̃0
, 〈sm〉 = π̃m, 〈1− sm〉 = 1− π̃m, (38)

〈ρm〉 = ãm

b̃m
, 〈ln ρm〉 = ψ (ãm)− ln

(
b̃m

)
, (39)

〈x〉 = μ,
〈
|xm|2

〉
= |μm|2 + χm,m, (40)

where ψ(x) = d
dx ln(Γ(x)) is the digamma function, μm is the

m-th element of μ, and χm,m is the m-th diagonal element of
Σ.

6) Convergence of the CAVBI-E Step: We have the following
convergence lemma for the CAVBI-E step.

Lemma 1 (Convergence of the CAVBI-E Step): Every limiting
point generated by the CAVBI-E Step using (33), (34), (35),
and (36) with the initialization in Section IV-D1 is a stationary
solution of Problem AVBI.

The proof can be found in Appendix B.
Finally, the overall CAVBI algorithm is summarized in

Algorithm 1.

V. CSSI-ASSISTED CONFIGURATION OPTIMIZATION

In this section, we formulate the configuration optimization
problem and develop closed form MSE in terms of configuration
parameters of ASPN and apply optimization techniques (SCA
to be specific) to come up with an efficient algorithm to dynam-
ically configure the ASPN based on CSSI, which in conjunction
with the proposed channel estimation technique yields improved
performance with less hardwares.

A. Configuration Optimization Formulation

According to the posterior approximation of channel vec-
tor x, i.e., q(x) = CN (x;μ,Σ), given by (34) in the CAVBI
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algorithm, the MSE of MAP estimation can be calculated as

MSE (W) =
1

M
E ‖x− x̂‖2 =

1

M
Tr (Σ) . (41)

Recall that in the CAVBI algorithm, the posterior approximation
is updated iteratively until the convergence to the stationary
point, and the final MSE of CAVBI estimation depends on the
stationary solution q∗(x), whose closed form is hard to obtain.
Alternatively, the initial MSE is chosen as the optimization
metric to seek the optimal configuration of W.

Based on the initial posterior of x in Section IV-D1, we can
get the initial MSE of x as

ϕ (W) =
1

M
Tr
(
AHWΣ−1n WHA+R−1

)−1
, (42)

where A � A(0). Σn is given by (3), which is also a func-
tion of W. R is given by R = diag 〈ρ〉−1, where the m-th
diagonal element is 〈ρm〉−1 = b̃m/ãm. Note that R can be
used to incorporate the CSSI, as explained below. If the CSSI
quality is high, e.g., πm = 1, ∀m ∈ Ω̂;πm = 0, ∀m /∈ Ω̂, the
m-th diagonal element of R is Θ(1) for m ∈ Ω̂ and close to 0
form /∈ Ω̂. If the CSSI quality is very poor, e.g., πm = D

M , ∀m,
the diagonal elements of R are all equal.

Remark 2: Even though the ASPN architecture proposed in
Section III enables an arbitrary number of PSs, the configuration
optimization metric ϕ(W) in (42) requires that N ≥ S, so that
the noise covariance matrixΣn is full rank and invertible. There-
fore, we consider N ≥ S for the ASPN configuration design in
the following sections.

The optimalW is given by solving the following optimization
problem:

A : min
W

ϕ (W) (43)

s.t. W = [W1, . . . ,WT ] , (44)

Wt = GtPtFt, ∀t, (45)

Pt = diag
([
ejφt,1 , . . . , ejφt,N

])
, φt,n ∈ A, ∀t, n,

(46)

Gt ∈ {0, 1}M×N ,Ft ∈ {0, 1}N×S , ∀t. (47)

Due to the element-wise discrete constraints on the matrices
Gt,Pt,Ft, problem A is non-convex, which is hard to solve.
To make the problem tractable, we first ignore the discrete
constraints and treat the variables in A as continuous variables.
After finding the optimal W∗, the resulting solution will be
projected onto the feasible discrete set.

According to (44), (45) and (46), W can be represented by
the vector w ∈ R(MN+N+NS)T , given by

w = [ g1︸︷︷︸
w1

; · · · ; gT︸︷︷︸
wT

; f1︸︷︷︸
wT+1

; · · · ; fT︸︷︷︸
w2T

; φ1︸︷︷︸
w2T+1

; · · · ; φT︸︷︷︸
w3T

],

(48)
where gt = vec(Gt) ∈ {0, 1}MN , ft = vec(Ft) ∈ {0, 1}NS
and φt = [φt,1; · · · ;φt,N ] ∈ AN . Then the original problem A
can be relaxed as

Ã : min
w∈W

ϕ(w), (49)

Algorithm 2: CAPSCA Algorithm for Analog BF Matrix
Design.

1: Input: A,R, τ � (τi)
3T
i=1 > 0, {γk} > 0,w0 ∈ W;

set k = 0.
2: If wk satisfies a suitable termination criterion: STOP.
3: % Parallel Updating
4: Compute ŵi, ∀i ∈ {1, . . . , 3T} using (56).
5: Update wk+1

i , ∀i ∈ {1, . . . , 3T} according to (57).
6: k ← k + 1, and go to Line 1.
7: w∗ = wk, project w∗ back to the discrete feasible set

using (51)-(53) to obtain the final solution ŵ.

whereW is a convex set, given by

W =
{
w : gt ∈ [0, 1]MN ; ft ∈ [0, 1]NS ;φt ∈ RN , ∀t} .

(50)
Therefore,W has a decoupled form:W = {w : wi ∈ Wi, i =
1, . . . , 3T}, whereWi is a convex set.

After finding the optimized w∗ = [g∗1, . . . ,φ
∗
T ] for problem

Ã , we project it onto the discrete feasible set to obtain the final
w as follows:

ĝt = argmin
gt

‖gt − g∗t‖ , s.t. gt ∈ {0, 1}MN , ∀t, (51)

f̂t = argmin
ft
‖ft − f ∗t ‖ , s.t. ft ∈ {0, 1}NS , ∀t, (52)

φ̂t,n = argmin
φ∈A

∣∣(φ∗t,n mod 2π
)− φ∣∣ , ∀n, t. (53)

B. CSSI-Assisted Parallel Successive Convex Approximation

The availability of high performance multi-core computing
platforms makes it increasingly desirable to develop parallel
optimization methods. Therefore, we aim at developing parallel
solutions for problem Ã , whereby operations can be carried out
on all block variables wi at the same time.

Algorithm 2 summarizes the key steps of the proposed CAP-
SCA algorithm.5 Specifically, given wk at iteration k, the block
variables {wi}3T

i=1 can be updated in parallel by solving the fol-
lowing subproblem for each block variablewi, i ∈ {1, . . . , 3T}:

ŵi = arg min
wi∈Wi

ϕ̂
(
wi;w

k
)
, (54)

where ϕ̂(wi;w
k) is the convex approximation of ϕ(·) at the

pointwk w.r.t. the block variablewi that preserves the first order
properties of ϕ(·) w.r.t. wi. We use the quadratic approximation
of ϕ(·), given by

ϕ̂
(
wi;w

k
)
� ϕ

(
wk

)
+
(∇wi

ϕ
(
wk

))T (
wi −wk

i

)
+ τi

∥∥wi −wk
i

∥∥2 , (55)

5The parallel computation feature refers to the algorithm to determine the
dynamic configuration of the ASPN. In 5G systems, there is Cloud-Radio Access
Network (C-RAN) [32] which provides parallel computation clusters. As such,
the proposed configuration algorithm can leverage the parallel computation
clusters in such C-RAN platform.
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Fig. 5. Overall flow of CSSI-assisted configuration optimization and CCE
algorithm.

where τi > 0 is a constant. Since the subproblems corresponding
to different block variables are strictly convex quadratic opti-
mization problems, the solution for (54) is unique and has a
closed form:

ŵi = PWi

[
− 1

2τi
∇wi

ϕ
(
wk

)
+wk

i

]
, (56)

where PWi
[·] denotes the projection onto the convex regionWi.

Given ŵi, wi is updated according to

wk+1
i = wk

i + γk
(
ŵi −wk

i

)
, (57)

where γk is a sequence to be properly chosen. Then the above
iteration is carried out until convergence.

Based on the convergence proof of the parallel SCA algorithm
in [33, Theorem 1], we have the following similar convergence
statement for the proposed CAPSCA algorithm.

Theorem 2 (Convergence of CAPSCA Algorithm): Let {wk}
be the sequence generated by Algorithm 2. Suppose that {γk}
satisfies the following conditions: i) γk ∈ (0, 1]; ii) γk → 0; iii)∑
k γ

k = +∞; iv)
∑
k(γ

k)2 < +∞. Then every limit point of
{wk} is a stationary solution of problem Ã .

C. Overall CE Algorithm and Complexity Analysis

The overall flow of CSSI-assisted configuration optimization
and CCE algorithm is summarized in Fig. 5. The computational
complexity of the proposed algorithm is analyzed as follows.
We focus on the number of complicated operations, such as
multiplications and divisions6 to show the main computational
burden of the proposed algorithm.

1) Complexity of the CAPSCA Algorithm: The computa-
tional complexities of updating gt, ft and φt are the same,
which are O(M3 +MSN). Due to the parallel updating,
the total computational requirement of CAPSCA algorithm is
O(M3 +MSN) per iteration.

2) Complexity of the CAVBI Algorithm: The computational
complexity of the CAVBI algorithm in each iteration is given as
follows.
� The complexity in updating q(ν) is O(M2ST ).
� The complexity in calculating Σ and μ is O(M2ST ) and
O(M2), respectively.

6There are other mathematical operations involved in the updating of q(s),
such as exponential/logarithm/digamma functions, and the number of these
operations is O(M), which is insignificant compared to the number of mul-
tiplications and divisions (which is a cubic order).

Fig. 6. Symmetric adaptive HBF architecture with fixed loadings.

� The complexity in updating q(ρ) and q(s) is O(M).
� The complexity in updating β is O(M2ST ) if the fixed

stepsize is used.
Therefore, the total computational requirement of the CAVBI

algorithm is O(M2ST ) per iteration.

D. Symmetric Adaptive HBF Architecture Design

The ASPN architecture in Section III is general and enables
asymmetric signal flow in the architecture, as shown in Fig. 3,
where the loading for each hardware component (i.e., RF chain,
PS and antenna) can be dynamically changing based on the
configuration optimization result. In such case, there could be
a scenario where one RF chain is connected to one antenna
only, and another RF chain is connected to all the antennas. To
simplify the design of RF matching, we consider the following
symmetric adaptive HBF (SA-HBF) design.

As illustrated in Fig. 6, we assumeN is divisible byS, and the
connection between RF chains and PSs is fixed, where each RF
chain is connected toN/S PSs and each PS is connected to one
RF chain. The phase shifting values Pt ∈ CN×N and the sum
switching network Gt ∈ {0, 1}M×N between PSs and antennas
are adaptively designed under the fixed loading constraint7 by
solving the following optimization problem:

A s : min
W

ϕ (W) (58)

s.t. W = [W1, . . . ,WT ] , (59)

Wt = GtPtFt,Gt ∈ {0, 1}M×N , ∀t (60)

N∑
n=1

gt,m,n = ι,

M∑
m=1

gt,m,n = �, ∀m,n, t, (61)

Pt = diag
([
ejφt,1 , . . . , ejφt,N

])
, φt,n ∈ A, ∀t, n,

(62)

where Ft = Diag(1N/S×1, . . . ,1N/S×1) ∈ {0, 1}N×S is a
block diagonal matrix with S all-one vectors on the diagonal,
1 ≤ ι ≤ N is a constant integer representing that each antenna is

7Such a fixed loading constraint guarantees an RF chain is always connected
to a fixed number of N/S PSs. This substantially simplifies the impedance of RF
matching.
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connected to ιPSs,1 ≤ � ≤M is a constant integer representing
that each PS is connected to � antennas.

Similar to the method adopted to solve problem A , A s is
first relaxed as

Ã s : min
ws∈Ws

ϕ(ws), (63)

where

ws = [ g1︸︷︷︸
ws

1

; · · · ; gT︸︷︷︸
ws

T

; φ1︸︷︷︸
ws

T+1

; · · · ; φT︸︷︷︸
ws

2T

],

Ws=
{
ws : gt ∈ [0, 1]MN ,Lgt = ι1M×1,Dgt=�1N×1, ∀t

}
,

L = [IM×M , . . . , IM×M ] ∈ {0, 1}M×MN and D = Diag
(11×M , . . . ,11×M ) ∈ {0, 1}N×MN . Then the CAPSCA in
Algorithm 2 is adopted to solve problem Ã s. After this, the
optimized (ws)∗ can be obtained. Then we project it onto
the discrete feasible set to obtain the final ws which satisfies
the discrete constraint in (60)-(62).

VI. SIMULATION RESULTS

In this section, we verify the importance and the effectiveness
of the flexibility introduced in ASPN architecture, the compres-
sive CE algorithm as well as the configuration algorithm under
the realistic mmWave channel model, i.e., mm-SSCM, which is
proposed in [26] for high frequency bands (28-73 GHz). The
following baselines are considered.
� Baseline 1 (VBI [23]): This is the standard VBI algorithm

with the randomly generated RF training vectors.
� Baseline 2 (CA-Weighted LASSO [18]): The CSSI-

assisted weighted LASSO algorithm in [18] can optimally
tune the regularization parameters according to the CSSI
accuracy. The RF training vectors are randomly generated.

� Baseline 3 (CAVBI-Fixed): The CAVBI algorithm pro-
posed in Section IV is used to estimate mmWave channel.
A fixed HBF architecture is considered and the RF training
vectors are randomly generated.

� Baseline 4 (Fully-Digital LS): Consider a traditional fully-
digital system where S =M , the user sends one pilot for
uplink training. The baseband received signal is y = h+
ñ. Then LS is used to estimate h from y.

Consider the BS is equipped withM = 128 antennas andS =
8 RF chains, and S ≤ N ≤M . We focus on the simulations for
the ULA with λ/2 inter antenna spacing. In the following sim-
ulation results, CAVBI-PSCA and CAVBI-Symmetric stands
for the proposed scheme with general ASPN architecture and
SA-HBF architecture, respectively. For the SA-HBF design, we
consider ι = 1 and � =M/N .8 For Baseline 1-3, we consider
a fixed symmetric HBF architecture.9 Note that the simulation
results of Baseline 2 forN < 64 are not shown due to its bad per-
formance under non-i.i.d. measurement matrix. 1-bit resolution

8For Baseline 1-3 and CAVBI-Symmetric schemes, we consider the case when
N and M is divisible by S and N , respectively.

9which means that each RF chain is connected to N/S PSs and each PS is
connected to M/N antennas uniformly without overlapping.

Fig. 7. NMSE vs SNR for different user velocities with N = 32, T = 4.

Fig. 8. NMSE versus SNR for different user velocities withN = 128, T = 4.

PSs are considered. The normalized MSE (NMSE) is used as the

performance metric, defined as NMSE = 1
K

∑K
k=1

‖hk−ĥk‖2
‖hk‖2 ,

where ĥk is the estimate of hk at the k-th frame, and K = 200
in all schemes.

A. Impact of SNR

In Fig. 7 and Fig. 8, we compare the NMSE performance
of various schemes versus SNR under different user veloci-
ties. Note that the velocity parameter will affect the quality of
the CSSI provided by the previous channel estimates. When
the velocity is relatively low, the previous estimated channels
can provide more information about the current channel to be
estimated, as such, higher quality CSSI can be obtained. The
proposed algorithm, Baseline 2 and 3 can exploit the higher
quality CSSI to improve the CE performance. However, the
Fully-Digital LS estimates channels independently over time,
without exploiting the CSSI. Therefore, the velocity parameter
should not affect the performance of Fully-Digital LS algorithm.

Compared to standard VBI, the CAVBI achieves a better CE
performance especially for a large number of PSs due to the
exploitation of CSSI. Compared to the CA-Weighted LASSO,
the CAVBI works well even for a small number of PSs and
low SNR due to its robustness to the measurement matrix and
noise. Compared to the fixed HBF architecture, the SA-HBF
architecture achieves a significant performance gain when the
number of PSs is small, and the performance gap decreases
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Fig. 9. NMSE versus pilot number T for different user velocities with N =
32, SNR = 5 dB.

when the number of PSs increases. This attributes to the adap-
tive design of the sum switching network. Compared to the
SA-HBF architecture, the proposed general ASPN architecture
achieves a big performance gain for various number of PSs.
Therefore, optimizing the dynamic HBF architecture based on
the CE performance metric can indeed enhance the final channel
recovery performance, and more design feasibility can lead to
larger performance gain. Even though the SA-HBF architecture
could lead to performance degradation compared to the general
ASPN architecture when we simplify the hardware implemen-
tation, SA-HBF still provides a flexible architecture to balance
the achievable performance and implementation complexity,
especially when PS resource is very limited.

Compared to the fully-digital system, the proposed CAVBI-
PSCA performs better in a low SNR regime. For example,
when the SNR is less than 20 dB for 3 km/h user velocity
(15 dB for 40 km/h user velocity), the CAVBI-PSCA in the
HBF system performs better than the LS in the fully-digital
system, with only T = 4 pilots and S = 8RF chains. Therefore,
joint configuration optimization and CCE with CSSI can greatly
improve the CE performance in HBF mmWave systems.

B. Impact of Pilot Number

In Fig. 9, we compare the NMSE performance of various
schemes versus pilot number T under different user velocities.
It shows that with dynamic HBF architecture, the proposed
CAVBI-PSCA and CAVBI-Symmetric achieve sufficient per-
formance gain compared to the CS-based CE baselines with
static HBF architecture. By optimally configuring the flexibility
of the ASPN architecture, the CAVBI-PSCA can achieve better
performance compared to the SA-HBF design, which can only
provide limited flexibility for the analog BF. Moreover, the
proposed CAVBI-PSCA can outperform the full-digital system
with T > 2 for 3 km/h user velocity and T > 3 for 40 km/h user
velocity.

C. Impact of the Number of Phase Shifters

In Fig. 10, we compare the NMSE performance of various
schemes versus the number of PSs N under different user
velocities. It shows that as long as N ≥ S = 8, CAVBI-PSCA
can outperform all CE baselines for any number of PSs, and

Fig. 10. NMSE versus the number of PSs N for different user velocities with
T = 4, SNR = 5 dB.

Fig. 11. NMSE versus the number of RF chains S with N = 64, T = 2,
SNR = 5 dB, user velocity is 3 km/h.

N = 24 PSs are sufficient for the CAVBI-PSCA algorithm as
when N ≥ 24, the NMSE performance saturates. Contrarily,
N = 32 PSs are sufficient for the CAVBI-Symmetric algorithm
to achieve a steady performance. CA-Weighted LASSO and
CAVBI-Fixed requires N =M = 128 PSs to achieve satisfac-
tory performance. And Fully-Digital LS requires S = 128 RF
chains to be able to work. This illustrates that the proposed
CAVBI-PSCA is much more hardware-efficient than existing
CE algorithms in HBF systems, with the best CE performance
under the same hardware constraint.

D. Impact of the Number of RF Chains

In Fig. 11, we compare the NMSE performance versus the
number of RF chains S. It shows that the proposed CAVBI-
PSCA algorithm outperforms all the baselines under the same
hardware constraints. Compared to the Fully-Digital LS, the
proposed algorithm can achieve better performance with much
less number of RF chains.

E. Impact of Different Antenna Configurations

In Fig. 12, we compare the NMSE performance of various
schemes for uniform circular array (UCA). It shows that the
proposed algorithm achieves the best CE performance compared
to the CS-based baseline algorithms. Compared to fully-digital
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Fig. 12. NMSE performance comparison for UCA with S = 8,N = 64, user
velocity is 3 km/h. Left: NMSE versus SNR with T = 4; Right: NMSE versus
pilot number T with SNR = 5 dB.

Fig. 13. Sum rate performance comparison with ULA, user velocity is 3 km/h,
S = 8,N = 32. Left: Sum rate versus SNR withT = 4; Right: Sum rate versus
pilot number T with SNR = 5 dB.

LS baseline, the proposed algorithm can achieve better CE per-
formance when SNR is low (e.g., less than 5 dB) or more pilots
are available (e.g., larger than 3). It also shows that the proposed
scheme can be applied to different antenna array configurations.

F. Comparison of the Sum Rate Performance

In Fig. 13, the sum rates of the different schemes are com-
pared. For comparison, we also plot the sum rate when perfect
CSI is available at the BS. The BS transmits single data stream
to the user using the fairness-aware greedy analog precoding
algorithm in [34] together with the singular vector digital BF.
The analog and digital precoding matrices are calculated from
the estimated channels. It can be observed that the proposed al-
gorithm achieves the highest sum rate among all baselines. When
the SNR becomes higher and number of pilots becomes larger,
the performance gap between proposed scheme and perfect CSI
becomes smaller.

VII. CONCLUSION

In this paper, a joint configuration optimization and CCE
algorithm in HBF system with hardware constraints is proposed.
Specifically, we first propose a novel and flexible ASPN ar-
chitecture subject to a limited number of PSs. The proposed
ASPN analog BF can be applied to any number of RF PSs.

Moreover, the ASPN allows more than one PSs to connect one
RF chain with the antenna, which can realize more flexible
analog BF matrix with non-constant modulus elements. Then,
we propose a CSSI-assisted CCE algorithm based on the ASPN
architecture, which can fully exploit the CSSI under a general
uncertain measurement matrix. After this, we propose a dynamic
configuration algorithm for the novel ASPN architecture. The
configuration parameters are chosen to minimize the MSE of
the channel estimation. The proposed configuration algorithm
has a highly parallel structure and can be implemented using
a multi-core platform to reduce the computational complexity.
Finally, the performance advantage of the proposed overall CE
algorithm is verified using a practical mmWave channel model.

APPENDIX

A. Gradient Update for Off-Grid Parameters

The derivative ξβ = ∂u(β;βi)
∂β can be calculated as ξβ =

[ξ(β1), . . . , ξ(βM )]T , with ξ(βm) = −2c0Re(a′HmWΣ−1n
(WHamc1 + c2)), where c0 = ã0/b̃0, am = a(ϑ̂m + βm),

a′m = da(ϑ̂m + βm)/dβm, c1 = |μm|2 + χm,m, c2 = WH∑
l �=m χl,mal − μ∗my−m, y−m = y −WH

∑
l �=m μla(ϑ̂l +

βl), μm and χl,m denote the m-th and (l,m)-th element of μ
and Σ.

B. Proof of Lemma 1

In our problem, the factorized form of q(Θ) in (29) can be
considered as parameterized functions, e.g., a gamma distribu-
tion function with parameters α̃m and β̃m for q(ρ), a Gaussian
distribution function with parameters μ and Σ for q(x), etc. As
a result, the optimization problem AVBI can be converted into
a conventional parameter optimization problem. The sequence
of the objective function in (31) generated by the alternating
updating is non-increasing. Together with the fact that the ob-
jective function (31) has a lower bound, the sequence converges
to a limit. Let the surrogate function be chosen as the objective
function itself. Since for any variable in problem AVBI we have
a unique solution, given by (32), according to Theorem 5 in [21],
the CAVBI-E step converges to a stationary solution of Problem
AVBI.
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